• 제목/요약/키워드: Flow state scale

검색결과 192건 처리시간 0.024초

A Coordinative Control Strategy for Power Electronic Transformer Based Battery Energy Storage Systems

  • Sun, Yuwei;Liu, Jiaomin;Li, Yonggang;Fu, Chao;Wang, Yi
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1625-1636
    • /
    • 2017
  • A power electronic transformer (PET) based on the cascaded H-bridge (CHB) and the isolated bidirectional DC/DC converter (IBDC) is capable of accommodating a large scale battery energy storage system (BESS) in the medium-voltage grid, and is referred to as a power electronic transformer based battery energy storage system (PET-BESS). This paper investigates the PET-BESS and proposes a coordinative control strategy for it. In the proposed method, the CHB controls the power flow and the battery state-of-charge (SOC) balancing, while the IBDC maintains the dc-link voltages with feedforward implementation of the power reference and the switch status of the CHB. State-feedback and linear quadratic Riccati (LQR) methods have been adopted in the CHB to control the grid current, active power and reactive power. A hybrid PWM modulating method is utilized to achieve SOC balancing, where battery SOC sorting is involved. The feedforward path of the power reference and the CHB switch status substantially reduces the dc-link voltage fluctuations under dynamic power variations. The effectiveness of the proposed control has been verified both by simulation and experimental results. The performance of the PET-BESS under bidirectional power flow has been improved, and the battery SOC values have been adjusted to converge.

자연순환회로를 이용한 대형 온수생산 시스템의 개발 (Development of a Large-Scale Hot Water Production System Using a Natural Circulation Loop)

  • 반태곤;이주동;이상천;김영길
    • 에너지공학
    • /
    • 제8권2호
    • /
    • pp.233-241
    • /
    • 1999
  • 온수생산을 위하여 기존의 강제순환식이 아닌 자연순환식 회로를 이용한 대형 온수생산 시스템을 개발하였다. 그리고 이 시스템의 설계와 성능평가를 위한 시뮬레이션 프로그램을 개발하여 실용화 가능성을 제시하였다. 실제규모의 성능실험에서 주어진 기하학적 조건하에 시스템이 정상상태 운전 시 보일러 가열량(695㎾)일 때, 급수 유량이 0.3$\ell$/s 로 일정하게 순환함을 보였다. 그리고, 비정상상태로 작동 할 경우 순환유량이 0.4~0.6 $\ell$/s 로 시스템이 불안정함을 실험을 통해 확인하였다. 개발된 프로그램과 대형의 온수생산 시스템의 성능평가의 비교.검증을 통하여 시뮬레이션 프로그램을 이용한 시스템 설계에 적용될 수 있음을 보였다.

  • PDF

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Modeling of air cushion vehicle's flexible seals under steady state conditions

  • Zalek, Steven F.;Karr, Dale G.;Jabbarizadeh, Sara;Maki, Kevin J.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.17-28
    • /
    • 2011
  • The purpose of this paper is to demonstrate the efficacy of modeling a surface effect ship's air-cushion flexible seal utilizing a two-dimensional beam under steady state conditions. This effort is the initial phase of developing a more complex three-dimensional model of the air-seal-water fluid-structure interaction. The beam model incorporates the seal flexural rigidity and mass with large deformations while assuming linear elastic material response. The hydrodynamic pressure is derived utilizing the OpenFOAM computational fluid dynamic (CFD) solver for a given set of steady-state flow condition. The pressure distribution derived by the CFD solver is compared with the pressure required to deform the seal beam model. The air pressure, flow conditions and seal geometry are obtained from experimental analysis. The experimental data was derived from large-scale experimental tests utilizing a test apparatus of a canonical surface effect ship's flexible seal in a towing tank over a variety of test conditions.

Experimental Validation of Numerical Model for Turbulent Flow in a Tangentially Fired Boiler with Platen Reheaters

  • Zheng, Chang-Hao;Xu, Xu-Chang;Park, Jong-Wook
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.129-138
    • /
    • 2003
  • A 1 : 20 laboratory scale test rig of a 200 MW tangentially fired boiler is built up with completely simulated structures such as platen heaters and burners. Iso-thermal turbulent flow in the boiler is mapped by 3-D PDA (Particle Dynamic Analyzer). The 3-D numerical models for the same case are proposed based on the solution of к-$\varepsilon$ model closed RANS (Reynolds time-Averaged Navier-Stokes) equations, which are written in the framework of general coordinates and discretized in the corresponding body-fitted meshes. Not only are the grid lines arranged to fit the inner/outer boundaries. but also to align with the streamlines to the best possibility in order to reduce the NDE (numerical diffusion errors). Extensive comparisons of profiles of mean velocities are carried out between experiment and calculation. Predicted velocities in burner region were quantitatively similar with measured ones, while those in other area have same tendency with experimental counterpart.

Wind tunnel study on fluctuating internal pressure of open building induced by tangential flow

  • Chen, Sheng;Huang, Peng;Flay, Richard G.J.
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.105-114
    • /
    • 2021
  • This paper describes a wind tunnel test on a 1:25 scale model of TTU building with several adjustable openings in order to comprehensively study the characteristics of fluctuating internal pressures, especially the phenomenon of the increase in fluctuating internal pressures induced by tangential flow over building openings and the mechanism causing that. The effects of several factors, such as wind angle, turbulence intensity, opening location, opening size, opening shape and background porosity on the fluctuating internal pressures at oblique wind angles are also described. It has been found that there is a large increase in the fluctuating internal pressures at certain oblique wind angles (typically around 60° to 80°). These fluctuations are greater than those produced by the flow normal to the opening when the turbulence intensity is low. It is demonstrated that the internal pressure resonances induced by the external pressure fluctuations emanating from flapping shear layers on the sidewall downstream of the windward corner are responsible for the increase in the fluctuating internal pressures. Furthermore, the test results show that apart from the opening shape, all the other factors influence the fluctuating internal pressures and the internal pressure resonances at oblique wind angles to varying degrees.

Analysis of the effect of blade positions on the aerodynamic performances of wind turbine tower-blade system in halt states

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Ge, Yaojun;Tamura, Yukio
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.205-221
    • /
    • 2017
  • The unsteady flow field disturbance between the blades and tower is one of the primary factors affecting the aerodynamic performance of wind turbine. Based on the research object of a 3MW horizontal axis wind turbine which was developed independently by Nanjing University of Aeronautics and Astronautics, numerical simulation on the aerodynamic performance of wind turbine system in halt state with blades in different position was conducted using large eddy simulation (LES) method. Based on the 3D unsteady numerical simulation results in a total of eight conditions (determined by the relative position with the tower during the complete rotation process of the blade), the characteristics of wind pressure distributions of the wind turbine system and action mechanism of surrounding flow field were analysed. The effect of different position of blades on the aerodynamic performance of wind turbine in halt state as well as the disturbance effect was evaluated. Results of the study showed that the halt position of blades had significant effect on the wind pressure distribution of the wind turbine system as well as the characteristics of flow around. Relevant conclusions from this study provided reference for the wind-resistant design of large scale wind turbine system in different halt states.

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • 제25권1호
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.