• Title/Summary/Keyword: Flow state scale

Search Result 192, Processing Time 0.024 seconds

A Study on the Flow State Scale of English Speaking and Listening in the e-Learning Environment (e-Learning 환경에서 영어 말하기와 듣기 학습자의 몰입경험(flow) 척도개발에 관한 탐색적 연구)

  • Kang, Jung-Hwa;Han, Kum-Ok;Shin, Dong-Ro
    • Journal of Digital Convergence
    • /
    • v.6 no.3
    • /
    • pp.13-22
    • /
    • 2008
  • The purpose of this study is to explore 'Flow Experience' of those studying English speaking and listening in the e-Learning environment. The exploration of flow experience in this study is based on the literature research of Csikszentmihalyi's flow models and other studies. There have been many studies on flow experience focusing on arts, leisure and sports in accordance with Csikszentmihalyi's original theory, however, his flow theory has recently been adapted to the educational field. Nonetheless, it is in the e-learning environment, rather than the face-to-face traditional teaming environment, that there is not enough flow state measurement scale. Therefore, it is important to develop as a stepping stone a flow state scale for those who study English speaking and listening by the cyber-native-speaker on e-Learning environment to improve their satisfaction and achievement.

  • PDF

Setup Procedure of Dump Valve for Full-Scale Airframe Test (전기체 구조시험의 덤프밸브 조절절차 개발;)

  • Kim, Sung-Chan;Kim, Sung-Jun;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1252-1257
    • /
    • 2003
  • This paper present a procedure of meter-out flow control method for dump valve in full-scale airframe test. Emergency stop, which results in dump state, can be happened during full-scale airframe test by several causes. Because servo valve can't control hydraulics actuator in the dump state, pressure in cylinder chamber may rise abruptly and overload can be acted to the test article. In this paper, the procedure and technology of orifice setting are investigated to protect the test article from unexpected loads by dump. The test results show that the presented methods decrease peak loads and improve unloading characteristics of hydraulic actuators in the dump state.

  • PDF

Validity and Reliability of a Korean Version of the Flow State Scale for Occupational Task (한글판 작업과제 몰입상태척도(Korean version of Flow State Scale for Occupational Task: K-FSSOT)의 타당도 및 신뢰도연구)

  • Lee, Jeong-Hoon;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.10 no.4
    • /
    • pp.53-63
    • /
    • 2021
  • Objective : This study aimed to develop a Korean version of the Flow State Scale for Occupational Task (K-FSSOT), to measure the level of a flow experience of a subject in occupational therapy activities. Methods : To develop a measure of K-FSSOT, validity and reliability were verified through a systematic development process. The validity was verified by calculating the content validity index (CVI) through the content validity of 10 occupational therapists and a question-and-answer survey of 20 patients. Reliability was verified by investigating the internal consistency and examination-re-test reliability of 33 patients. Results : The item-CVI for each question in the content feasibility study was .90 to 1.00, and the scale-CVI, which is the average of the whole item, was found to be appropriate at .97. The verification of reliability indicated that the intrinsic value of the entire question was high at .855, and the test-retest reliability value was high at .894 (p<.01), showing a high correlation, and very high reliability. Conclusion : K-FSSOT could be used as a useful tool to measure the level of a flow experience of the target in performing occupational therapy activities for occupational therapists concerned about the participation and flow experience of the target.

Analysis of Operation Parameters of Pilot-Scale Packed-Absorption System for Airborne Methyl Ethyl Ketone Control (공기 중 메틸에틸케톤 제어를 위한 Pilot-Scale 흡수 시스템의 운영인자 분석)

  • Jo, Wan-Kuen;Kim, Wang-Tae
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.501-509
    • /
    • 2011
  • Unlike many laboratory-scale studies on absorption of organic compounds (VOCs), limited pilot-scale studies have been reported. Accordingly, the present study was carried out to examine operation parameters for the effective control of a hydrophilic VOC (methyl ethyl ketone, MEK) by applying a circular pilot-scale packed-absorption system (inside diameter 37 cm ${\times}$ height 167 cm). The absorption efficiencies of MEK were investigated for three major operation parameters: input concentration, water flow rate, and ratio of gas flow-rate to washing water amount (water-to-gas ratio). The experimental set-up comprised of the flow control system, generation system, recirculation system, packed-absorption system, and outlet system. For three MEK input concentrations (300, 350, and 750 ppm), absorption efficiencies approached near 95% and then, decreased gradually as the operation time increased, thereby suggesting a non-steady state condition. Under these conditions, higher absorption efficiencies were shown for lower input concentration conditions, which were consistent with those of laboratory-scale studies. However, a steady state condition occurred for two input concentration conditions (100 and 200 ppm), and the difference in absorption efficiencies between these two conditions were insignificant. As supported by an established gas-liquid absorption theory, a higher water flow rate exhibited a greater absorption efficiency. Moreover, as same with the laboratory-scale studies, the absorption efficiencies increased as water-to-gas ratios increased. Meanwhile, regardless of water flow rates or water-to-gas ratios, as the operation time of the absorption became longer, the pH of water increased, but the elevation extent was not substantial (maximum pH difference, 1.1).

The Variation of the Residual Chlorine Concentration in a Distribution Reservoir (유출량 변동에 따른 모형배수지내 잔류염소농도의 변화)

  • Lee, Sang-Jun;Hyeon, In-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.725-733
    • /
    • 2001
  • In this study, variation of effluent of residual chlorine concentration was estimated from bench scale distribution reservoir test according to variation of flow and baffle condition. According to the bench scale test results, when the flow rate was an unsteady state, difference between the case of no-baffle in the reservoir and the case of two-baffles in the reservoir became less than the condition when the effluent flow was in a steady state. Consequently, the results are caused by the flow rate variation. Thus, the baffle is less effective than a clearwell of steady state condition.

  • PDF

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

A Study of a Hydrophobic Surface: Comparing Pure Water and Contaminated Water

  • Ambrosia, Matthew Stanley;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.407-413
    • /
    • 2013
  • The flow of sewage has been studied for hundreds of years. Reducing drag in pipes can allow sewer to be removed easily and quickly. Drag reduction is not only a macroscale issue. Physical and chemical properties of the nano-scale can affect flow at the macroscopic scale. In this paper the predictability of hydrophobicity at the nano-scale is studied. Molecular dynamics simulations were used to calculate the range of contact angles of water droplets in equilibrium on a pillared graphite surface. It was found that at a pillar height of two graphite layers there was the largest range of contact angles. It is observed that at this height the droplet begins to transition from the Wenzel state to the Cassie-Baxter state. Surfaces with larger pillar heights have much larger contact angles corresponding to a more hydrophobic surface. Silicon dioxide was also simulated in the water droplet. The contaminant slight decreased the contact angle of the water droplet.

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria

  • Adeogun, Adeniyu Ganiyu;Ganiyu, Habeeb Oladimeji;Ladokun, Laniyi Laniran;Ibitoye, Biliyamin Adeoye
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.267-273
    • /
    • 2020
  • This Hydrokinetic energy system is the process of extracting energy from rivers, canals and others sources to generate small scale electrical energy for decentralized usage. This study investigates the application of Soil and Water Assessment Tool (SWAT) in Geographical Information System (GIS) environment to evaluate the theoretical hydrokinetic energy potentials of selected Rivers (Asa, Awun and Oyun) all in Asa watershed, Kwara state, Nigeria. SWAT was interfaced with an open source GIS system to predict the flow and other hydrological parameters of the sub-basins. The model was calibrated and validated using observed stream flow data. Calibrated flow results were used in conjunction with other parameters to compute the theoretical hydrokinetic energy potentials of the Rivers. Results showed a good correlation between the observed flow and the simulated flow, indicated by ash Sutcliffe Efficiency (NSE) and R2 of 0.76 and 0.85, respectively for calibration period, and NSE and R2 of 0.70 and 0.74, respectively for the validation period. Also, it was observed that highest potential of 154.82 MW was obtained along River Awun while the lowest potential of 41.63 MW was obtained along River Asa. The energy potentials obtained could be harnessed and deployed to the communities around the watershed for their energy needs.

A Simplified Reynolds Stress Model with Turbulent Kinetic Energy-Length Scale (난류운동에너지-길이 Scale을 사용하는 단순화된 Reynolds 응력모형)

  • Huh Jae-Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.404-408
    • /
    • 2005
  • The Reynolds strss equation with turbulent energy-length scales was simplified in the nearly homogeneous turbulent equilibrium flow and a modified Reynolds stress model was proposed. Tn the model proposed in the present study, Reynolds stresses can be expressed in the form of algebraic equation, so that the turbulent stresses and related quantities are calculated through relatively simple procedures. The model predicted well the turbulent shear stresses of homogeneous flow in local equilibrium state obtained from experimental results published earlier Constants used In the model was determined universally and its validity was discussed briefly.

  • PDF