• Title/Summary/Keyword: Flow state

Search Result 3,196, Processing Time 0.032 seconds

Improvement of wireless communications environment of Web-pad on board Yard tractor in container terminal use convergence technology (융복합 기술을 이용하는 컨테이너 항만에서 야드 트랙터에 탑재된 웹-패드의 무선통신 환경 개선 방안)

  • Hong, Dong-Hee;Kim, Chang-Gon
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.281-288
    • /
    • 2015
  • The container terminals use convergence technology that exchange information for cargo work, using wireless communication between the TOS(Terminal Operations System) and the handling equipments(CC, TC, YT). But if the container cargoes pile up high in the container yard, delayed cargo work and cargo working list information error happen because of communication dead spots(the worker can not receive the information) which wireless communication is disconnected. At this time the driver of the yard tractor(YT) must be able to recognize the communication state. If then, delayed cargo work and cargo working list information errors that occur in the shaded communication area can be avoided, and can process the delayed work due to wireless communication break. In this project, we have built wireless communication environment to increase the efficiency of the loading and unloading operations which the operator can respond actively, when the work is delayed and work orders result in errors. That is, the flow of the wireless communication module has been changed.

Trend Analysis of Curriculum Application Status of 2015 Revised Integrated Science and Scientific Laboratory Experiment Curriculum (2015 개정 통합과학과 과학탐구실험 교육과정의 2차 년도 적용 현황 추이 분석)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.53-63
    • /
    • 2020
  • The purpose of this study is to analyze the current status of the second year of application of Integrated Science and Science Laboratory Experiments, which are common courses of high school, and to explore suggestions for curriculum development in the future. To this end, the results of the survey of a total of 244 science-core and general high schools were compared with the survey result of 2018 school year. In addition, in-depth interviews were conducted with nine science teachers of the focus group to discuss the current state of curriculum implementation. According to the results, as in the first year, most of the Integrated Science courses were implemented in 6-8 units, and in most schools the number of teachers in charge of Integrated Science per class were 3-4. In the teacher's focus group interview, teachers insisted that Integrated Science requires integrated teaching approaches and is good for generating students' interest, but it is difficult to implement process-based assessment due to issues such as ensuring fairness of assessment. Most of Science Laboratory Experiments courses were implemented in two semesters, one unit per semester, and there was little link between Integrated Science and Science Laboratory Experiments because of the different teaching staff. The school life record entry method of Science Laboratory Experiments has been changed to criterion-based assessment starting in 2019, so students' satisfaction or flow of classes is much better than expected, and teachers can teach without burden. Based on the research results, ways to support the settlement of Integrated Science and Science Laboratory Experiments as common subjects, and ways to improve those subjects in the next curriculum revision were suggested.

Concise Bedside Surgical Management of Profound Reperfusion Injury after Vascular Reconstruction in Severe Trauma Patient: Case Report

  • Chung, Hoe Jeong;Kim, Seong-yup;Byun, Chun Sung;Kwon, Ki-Youn;Jung, Pil Young
    • Journal of Trauma and Injury
    • /
    • v.29 no.4
    • /
    • pp.204-208
    • /
    • 2016
  • For an orthopaedic surgeon, the critical decisions to either amputate or salvage a limb with severe crushing injury with progressive ischemic change due to arterial rupture or occlusion can become a clinical dilemma at the Emergency Department (ED). And reperfusion injury is one of the fetal complications after vascular reconstruction. The authors present a case which was able to save patient's life by rapid vessel ligation at bedside to prevent severe reperfusion injury. A 43-year-old male patient with no pre-existing medical conditions was transported by helicopter to Level I trauma center from incident scene. Initial result of extended focused assessment with sonography for trauma (eFAST) was negative. The trauma series X-rays at the trauma bay of ED showed a multiple contiguous rib fractures with hemothorax and his pelvic radiograph revealed a complex pelvic trauma of an Anterior Posterior Compression (APC) Type II. Lower extremity computed tomography showed a discontinuity in common femoral artery at the fracture site and no distal run off. Surgical finding revealed a complete rupture of common femoral artery and vein around the fracture site. But due to the age aspect of the patient, the operating team decided a vascular repair rather than amputation even if the anticipated reperfusion time was 7 hours from the onset of trauma. Only two hours after the reperfusion, the patient was in a state of shock when his arterial blood gas analysis (ABGA) showed a drop of pH from 7.32 to 7.18. An imminent bedside procedure of aseptic opening the surgical site and clamping the anastomosis site was taken place rather than undergoing a surgery of amputation because of ultimately unstable vital sign. The authors would like to emphasize the importance of rapid decision making and prompt vessel ligation which supply blood flow to the ischemic limb to increase the survival rate in case of profound reperfusion injury.

Development of an Optimization Model and Algorithm Based on Transportation Problem with Additional Constraints (추가 제약을 갖는 수송문제를 활용한 공화차 배분 최적화 모형 및 해법 개발)

  • Park, Bum Hwan;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.833-843
    • /
    • 2016
  • Recently, in the field of rail freight transportation, the number of trains dedicated for shippers has been increasing. These dedicated trains, which run on the basis of a contract with shippers, had been restricted to the transportation of containers, or so called block trains. Nowadays, such commodities have extended to cement, hard coal, etc. Most full freight cars are transported by dedicated trains. But, for empty car distribution, the efficiency still remains questionable because the distribution plan is manually developed by dispatchers. In this study, we investigated distribution models delineated in the KTOCS system which was developed by KORAIL as well as mathematical models considered in the state-of-the-art. The models are based on optimization models, especially the network flow model. Here we suggest a new optimization model with a framework of the column generation approach. The master problem can be formulated into a transportation problem with additional constraints. The master problem is improved by adding a new edge between the supply node and the demand node; this edge can be found using a simple shorted path in the time-space network. Finally, we applied our algorithm to the Korean freight train network and were able to find the total number of empty car kilometers decreased.

A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell (직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구)

  • Wee, Jung Ho;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 1999
  • The trend of poisoning of reforming catalyst along with the position of anodic catalyst bed was studied. Keeping the conditions that steam to carbon ratio was 2.5, operating voltage was 0.75 V, current density was $140mA/cm^2$, the unit cell was operated during 24 hrs at a steady state. And then the cell was stopped, the catalysts packed in the position of inlet, middle and outlet were sampled individually and then the amount of carbon, Li and K poisoned were analysed. After 100 hrs operated, the catalysts at the same positions were analysed at the same manner. The result of this experiment was as followings. After 24 hrs operated, the poisoning amounts of Li and K in the catalyst were 0.27 wt% at inlet, 0.23 wt% at middle and the highest value 1.59 wt% at outlet. After 100 hrs, the amount of poisoning is the highest in the catalyst packed at the inlet of unit cell. The performance simulation of unit cell explained these trends of poisoning catalysts. The simulation told that the catalyst in the region of the inlet of unit cell treated the 90% of initial methane flow rate and the highest electrochemical reaction happened in this region. So the catalysts of this region were the most poisoned with carbon, Li and K and also the rate of poisoning is faster than that of the catalyst at other regions. The temperature at the region of outlet of unit cell was $30^{\circ}C$ higher than that of other regions, so more Li, and K vaporized than at other regions and little reforming reaction at this region made the catalysts poisoning rate low.

  • PDF

Numerical Simulajtions of Non-ergodic Solute Transport in Strongly Heterogeneous Aquiferss (불균질도가 높은 대수층내에서의 비에르고딕 용질이동에 관한 수치 시뮬레이션)

  • Seo Byong-Min
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.245-255
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume, $$lt;S_{ij}'(t',l')$gt;$ and plume centroid variances, $$lt;R_{ij}'(t',l')$gt;$ were simulated with 3200 Monte Carlo runs for three variances of log K, $\omega^2_y1.0,,2.5,$ and 5.0, and three dimensionless lengths of line plume sources ( l=,5 and 10) normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are not fit well with the first order results. The first order theoretical results definitely underestimated the simulated transverse second spatial moments for the aquifers of large u: and small initial plume sources. The ergodic condition for the second spatial moments is far from reaching, and the first order theoretical results of the transverse second spatial moment of the ergodic plume slightly underestimated the simulated moments.

A Study of the Management of Groundwater Reservoir by Numerical Three Dimensional Flow Model (3차원 흐름모델을 이용한 지하저수지의 관리에 대한 연구)

  • 신방웅;김희성
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.289-300
    • /
    • 1995
  • At the initial stage of the underground reservoir design one should thoroughly consider surface and subsurface hydrology, hydrogeologic characteristics of aquifer system, and the function of cut - off wall because it is linked to the effective management. In this study, three dimensional finite difference model was applied to analyse the function of Ian underground reservoir at Kyungbuk Province. The steady and unsteady state conditions after construction of the underground dam were simulated through the model, and from these results the groundwater budget and the safe yield were determined. The model simulation indicates the infiltration of irrigation water to be one of the major factors of seasonal fluctuation of groundwater level. The recharge rates of irrigation water were estimated as 4.3mm/d during May and June, and 1.7mm/d during July and Agust. Groundwater recharge from the watershed area estimated to about $0.04m^3/s$, almost consistent through the year. In 1984, groundwater discharge through the transverse section of the dam was $0.002m^3/s$ and the optimum yield for two momths(July and Aguest)was $254000m^3$, however, the discharge became $0.013m^3/s$ in1993, implying the failure of cut -off function. without appropaiate of the cut - off wall, optiumum yield during the irrigaton period would be $93, 000m^3$.

  • PDF

Effects of Polyurethane Coated Urea Supplement on In vitro Ruminal Fermentation, Ammonia Release Dynamics and Lactating Performance of Holstein Dairy Cows Fed a Steam-flaked Corn-based Diet

  • Xin, H.S.;Schaefer, D.M.;Liu, Q.P.;Axe, D.E.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.491-500
    • /
    • 2010
  • Three experiments were conducted to investigate the effects of polyurethane coated urea on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. In Exp. 1, a dual-flow continuous culture was run to investigate the effect of polyurethane coated urea on nutrient digestibility, rumen fermentation parameters and microbial efficiency. Three treatment diets with isonitrogenous contents (13.0% CP) were prepared: i) feedgrade urea (FGU) diet; ii) polyurethane coated urea (PCU) diet; and iii) isolated soy protein (ISP) diet. Each of the diets consisted of 40% steam-flaked corn meal, 58.5% forages and 1.5% different sources of nitrogen. PCU and FGU diets had significantly lower digestibility of NDF and ADF (p<0.01) than the ISP diet. Nitrogen source had no significant effect (p = 0.62) on CP digestibility. The microbial efficiency (expressed as grams of microbial N/kg organic matter truly digested (OMTD)) in vitro of the PCU diet (13.0 g N/kg OMTD) was significantly higher than the FGU diet (11.3 g N/kg OMTD), but comparable with the ISP diet (14.7 g N/kg OMTD). Exp. 2, an in vitro ruminal fermentation experiment, was conducted to determine the ammonia release dynamics during an 8 h ruminal fermentation. Three treatment diets were based on steam-flaked corn diets commonly fed to lactating cows in China, in which FGU, PCU or soybean meal (SBM) was added to provide 10% of total dietary N. In vitro $NH_3-N$ concentrations were lower (p<0.05) for the PCU diet than the FGU diet, but similar to that for the SBM diet at all time points. In Exp. 3, a lactation trial was performed using 24 lactating Holstein cows to compare the lactating performance and blood urea nitrogen (BUN) concentrations when cows were fed PCU, FGU and SBM diets. Cows consuming the PCU diet had approximately 12.8% more (p = 0.02) dietary dry matter intake than those consuming the FGU diet. Cows fed the PCU diet had higher milk protein content (3.16% vs. 2.94%) and lower milk urea nitrogen (MUN) concentration (13.0 mg/dl vs. 14.4 mg/dl) than those fed the FGU diet. Blood urea nitrogen (BUN) concentration was significantly lower for cows fed the PCU (16.7 mg/dl) and SBM (16.4 mg/dl) diets than the FGU (18.7 mg/dl) diet. Cows fed the PCU diet had less surplus ruminal N than those fed the FGU diet and produced a comparable lactation performance to the SBM diet, suggesting that polyurethane coated urea can partially substitute soybean meal in the dairy cow diet without impairing lactation performance.

Development of Sag and Tension Sensitivity Estimation Method for Configuration Control under PPWS Erection in a Suspension Bridge (현수교 PPWS 가설중 형상관리를 위한 PPWS 새그 및 장력민감도 산정법 개발)

  • Jeong, Woon;Seo, Ju Won;Lee, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.255-266
    • /
    • 2012
  • Main cable of a suspension bridge is the important member which shows the overall structure integrity at bridge completion. Configuration of main cable is a free hanging state at cable erection completion and is different from that at bridge completion supporting the dead loads such as hanger, girder, and so on. Accordingly, the configuration control under cable erection is considerably significant because the configuration at cable erection completion has direct influence on that at bridge completion. That is performed by sag adjustments at center, side span and tension adjustments at anchor span. The former needs the sag sensitivity which represents the control quantity of strand length corresponding to that of sag. The latter requires the tension sensitivity which shows the change of strand tension according to that of strand temperature. In this study, the fundamental equations of cable were derived with the assumption of either catenary or parabola shape, the differential-related equations using chain rule on horizontal tension were drawn from those and finally the estimation methods of the sag / tension sensitivity were proposed from both those. The nonlinear numerical analysis flow charts of sag sensitivity based on the catenary equations were proposed and the sag sensitivities grounded on the differential-related equations were compared with the results using them for various parameters of sag change. Also, considering the combinations of sag change parameters, the calculation method of the final variation for the cable sag was suggested. For the real suspension bridge under construction with PPWS method, the sag/tension sensitivity were estimated considering the construction conditions like the change of PPWS length, PPWS temperature, bridge span, etc.. We hope that this study will be a systematic guideline for the configuration control under main cable erection and improved highly by field verification in the real bridge site.

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF