• Title/Summary/Keyword: Flow rotation

Search Result 584, Processing Time 0.036 seconds

Study on the Periodic Flows in a Rectangular Container Under a Background Rotation

  • Suh, Yong-Kweon;Park, Jae-Hyun;Kim, Sung-Kyun;Son, Young-Rak
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.671-680
    • /
    • 2004
  • We present numerical and experimental results of the periodic flows inside a rectangular container under a background rotation. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify the fundamental reasons of discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

Numerical optimization of flow uniformity inside an under body- oval substrate to improve emissions of IC engines

  • Om Ariara Guhan, C.P.;Arthanareeswaran, G.;Varadarajan, K.N.;Krishnan, S.
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.198-214
    • /
    • 2016
  • Oval substrates are widely used in automobiles to reduce the exhaust emissions in Diesel oxidation Catalyst of CI engine. Because of constraints in space and packaging Oval substrate is preferred rather than round substrate. Obtaining the flow uniformity is very challenging in oval substrate comparing with round substrate. In this present work attempts are made to optimize the inlet cone design to achieve the optimal flow uniformity with the help of CATIA V5 which is 3D design tool and CFX which is 3D CFD tool. Initially length of inlet cone and mass flow rate of exhaust stream are analysed to understand the effects of flow uniformity and pressure drop. Then short straight cones and angled cones are designed. Angled cones have been designed by two methodologies. First methodology is rotating flow inlet plane along the substrate in shorter or longer axis. Second method is shifting the flow inlet plane along the longer axis. Large improvement in flow uniformity is observed when the flow inlet plane is shifted along the direction of longer axis by 10, 20 and 30 mm away from geometrical centre. When the inlet plane is rotated again based on 30 mm shifted geometry, significant improvement at rotation angle of $20^{\circ}$ is observed. The flow uniformity is optimum when second shift is performed based on second rotation. This present work shows that for an oval substrate flow, uniformity index can be optimized when inlet cone is angled by rotation of flow inlet plane along axis of substrate.

배경회전 하의 수평 보텍스의 거동 (Motion of a Horizontal Vortex Under a Background Rotation)

  • 서용권;여창호
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1101-1110
    • /
    • 2005
  • In this paper we present the numerical results of the behavior of the horizontal vortex generated by ejecting a liquid vertically upward from an orifice into the bulk fluid above the orifice. The numerical calculation has been performed for the axi-symmetric Navier-Stokes equation. A simple flow-visualization experiment was also conducted to qualitatively verify the numerical solutions. Three cases of the flow configurations studied in this paper are; firstly, the vortex was generated without any background rotation, secondly, the vortex was made under a full background rotation, and thirdly, the vortex was made during the spin-up process such that only the region adjacent to the side wall was set into motion viewed in the inertial frame of reference. It was shown that the swirl flow at the inlet boundary affects considerably the formation and development of the vortex for the second case. In the third case, it was remarkable to see that the vortex cannot penetrate into the region near to the side wall of the tank, because of the strong swirl flow and corresponding high pressure gradient in the region.

The effect of rotation on the macro-steps formation during 4H-SiC solution growth

  • Shin, Yun-Ji;Park, Tae-Yong;Bae, Si-Young;Jeong, Seong-Min
    • 한국결정성장학회지
    • /
    • 제29권6호
    • /
    • pp.294-297
    • /
    • 2019
  • New insights about macro-step formation has been investigated. The phenomena of surface instability caused by the interaction between step flow and fluid flow was describe in mechanical way. The rotation of the seed crystal in a clockwise direction was applied with a speed varied from 30 to 200 rpm during the TSSG process on the Si- and C-faces 4H-SiC. The macro-steps were formed along the two specific directions at different locations on the crystal for each, i.e., [10-10] or [01-10] directions or both. From the results, it is suggested that the macro-steps were generated from the micro-steps by interaction between step flow and fluid flow during the rotation of seed crystal. Furthermore, The fluid flow could be effective to control the micro- and/or macro-step behavior during solution growth.

비정렬 유한 체적법을 이용한 횡류홴 유동장 해석 (Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method)

  • 강동진;배상수
    • 한국유체기계학회 논문집
    • /
    • 제8권3호
    • /
    • pp.7-15
    • /
    • 2005
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate aye carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구 (A study on the development of CW(Continuous-Wave) Doppler system for measuring bi-directional blood flow information.)

  • 강충신;김영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1239-1242
    • /
    • 1987
  • With the convention CW Doppler velocity meter, bi-directional velocities cannot be separated. The new CW Doppler system usee quadrature detection and phase rotation to Produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, can easily differentiate typical artery flow from vein flow. and measure both velocity characteristics qualitatively.

  • PDF

회전하는 원형 실린더 주위의 층류 유동장에 관한 수치적 연구 (Three-dimensional Laminar Flow Past a Rotating Cylinder)

  • 이용석;윤현식;두정훈;하만영
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.827-833
    • /
    • 2009
  • The present study numerically investigates three-dimensional laminar flow past a rotating circular cylinder placed in a uniform stream. For the purpose of a careful analysis of the modification of flow by the effect of the rotation on the flow, numerical simulations are performed at a various range of rotational coefficients ($0{\leq}{\alpha}{\leq}2.5$) at one Reynolds number of 300. As ${\alpha}$ increases, flow becomes stabilized and finally a steady state beyond the critical rotational coefficient. The 3D (three dimensional) wake mode of the stationary cylinder defined at this Reynolds number has been disorganized according to ${\alpha}$, which were observed by the visualization of 3D vortical structures. The variation of the Strouhal number is very weak when the wake pattern is changed according to the rotational coefficient. As ${\alpha}$ increases, the lift increases, whereas the drag decreases.

비정렬 유한 체적법을 이용한 횡류 홴 유동장 해석 (Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method)

  • 강동진;배상수
    • 한국유체기계학회 논문집
    • /
    • 제9권4호
    • /
    • pp.27-35
    • /
    • 2006
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate are carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

회전하는 원형 실린더 주위의 층류 유동장에 관한 수치적 연구 (Three-dimensional Laminar Flow past a Rotating Cylinder)

  • 이용석;두정훈;하만영;윤현식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2733-2737
    • /
    • 2008
  • The present study numerically investigates three-dimensional laminar flow past a rotating circular cylinder placed in a uniform stream. For the purpose of a careful analysis of the modification of flow by the effect of the rotation on the flow, numerical simulations are performed at a various range of rotational speeds($0{\leq}{\alpha}{\leq}2.5$) at one Reynolds number of 300. As $\alpha$ increases, flow becomes stabilized and finally a steady state beyond the critical rotational speed. The 3D (three dimensional) wake mode of the stationary cylinder defined at this Reynolds number has been disorganized according to $\alpha$, which were observed by the visualization of 3D vortical structures. The variation of the Strouhal number is significant when the wake pattern is changed according to the rotational speed. As $\alpha$ increases, the lift increases, whereas the drag decreases.

  • PDF

안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구 (Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders)

  • 황영규;김영주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF