DOI QR코드

DOI QR Code

Three-dimensional Laminar Flow Past a Rotating Cylinder

회전하는 원형 실린더 주위의 층류 유동장에 관한 수치적 연구

  • 이용석 (부산대학교 대학원 기계공학부) ;
  • 윤현식 (부산대학교 첨단조선공학 연구센터) ;
  • 두정훈 (부산대학교 대학원 기계공학부) ;
  • 하만영 (부산대학교 기계공학부)
  • Published : 2009.11.01

Abstract

The present study numerically investigates three-dimensional laminar flow past a rotating circular cylinder placed in a uniform stream. For the purpose of a careful analysis of the modification of flow by the effect of the rotation on the flow, numerical simulations are performed at a various range of rotational coefficients ($0{\leq}{\alpha}{\leq}2.5$) at one Reynolds number of 300. As ${\alpha}$ increases, flow becomes stabilized and finally a steady state beyond the critical rotational coefficient. The 3D (three dimensional) wake mode of the stationary cylinder defined at this Reynolds number has been disorganized according to ${\alpha}$, which were observed by the visualization of 3D vortical structures. The variation of the Strouhal number is very weak when the wake pattern is changed according to the rotational coefficient. As ${\alpha}$ increases, the lift increases, whereas the drag decreases.

Keywords

References

  1. Hu G., Sun D., Yin X., and Tong B., 1996, 'Hopf Bifurcation in Wakes Behind a Rotating and Translating Circular Cylinder,' Phys. Fluids, Vol.8, pp.1972-1974 https://doi.org/10.1063/1.868976
  2. Kang S., Choi H., & Lee S., 1999, 'Laminar Flow Past a Rotating Circular Cylinder,' Phys. Fluids, Vol.11, pp.3312~3320 https://doi.org/10.1063/1.870190
  3. Stojkovic D., Breuer M., Durst F., 2002, 'Effect of High Rotation Rates on the Laminar Flow Around a Circular Cylinder.,' Phys. Fluids, Vol.14, p.3160 https://doi.org/10.1063/1.1492811
  4. Mittal S.,& Kumar B., 2003, 'Flow Past a Rotating Cylinder,' J. Fluid Mech., Vol.476, pp. 303~334 https://doi.org/10.1017/S0022112002002938
  5. Kim, J. and Choi, H., 2005, 'Distributed Forcing of low over a Circular Cylinder,' Phys. Fluids.,Vol.17 https://doi.org/10.1063/1.1850151
  6. Zang Y., Street R. L., & Koseff J. R., 1994, 'A Non-staggered Grid, Fractional step Methood for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates,' J. Comput. Phys., Vol.114, pp.18~33 https://doi.org/10.1006/jcph.1994.1146
  7. Persillon H. & Braza M., 1998, 'Phiysical Analysis of the Transition to Turbulence in the Wake of a Circular Cylinder by Three-Dimensional Navier-Stokes Simulation,' J. Fluid Mech., Vol.365, pp.23~88 https://doi.org/10.1017/S0022112098001116
  8. Posdziech O. & Grundmann R., 2001, 'Numerical Simulation of the Flow Around an Infinitely Long Circular Cylinder in the Transition Regime,' Theor. Comput. Fluid Dyn.,Vol.15, p.121 https://doi.org/10.1007/s001620100046
  9. Kravchenko A. G., Moin P. & Shariff K., 1999,'Bspline Method and Zonal Grids for Simulations of Complex Turbulent Flows,' J. Comput. Phys., Vol.151, p.757 https://doi.org/10.1006/jcph.1999.6217
  10. Jeong J. & Hussain F., 1995, 'On the Identification of a Vortex,' J. Fluid Mech., Vol.285, pp.69~93 https://doi.org/10.1017/S0022112095000462