• 제목/요약/키워드: Flow rate-pressure gradient

검색결과 82건 처리시간 0.021초

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • 제1권1호
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF

Turbulent Flow over Thin Rectangular Riblets

  • El-Samni O. A.;Yoon Hyun Sik;Chun Ho Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1801-1810
    • /
    • 2005
  • The effect of longitudinal thin rectangular riblets aligned with the flow direction on turbulent channel flow has been investigated using direct numerical simulation. The thin riblets have been modeled using the immersed boundary method (IBM) where the velocities at only one set of vertical nodes at the riblets positions are enforced to be zeros. Different spacings, ranging between 11 and 43 wall units, have been simulated aiming at getting the optimum spacing corresponding to the maximum drag reduction while keeping the height/spacing ratio at 0.5. Reynolds number based on the friction velocity ${\mu}_\tau$ and the channel half depth $\delta$ is set to 150. The flow is driven by adjusted pressure gradient so that the mass flow rate is kept constant in all the simulations. This study shows similar trend of the drag ratio to that of the experiments at the different spacings. Also, this research provides an optimum spacing of around 17 wall units leading to maximum drag reduction as experimental data. Explanation of drag increasing/decreasing mechanism is highlighted.

리튬브로마이드 수용액 유하액막의 흡수과정에 대한 근사 해법 : 증기 유동의 영향 (Approximate solutions on the absorption process of an aqueous LiBr falling film : effects of vapor flow)

  • 김병주;이찬우
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.144-152
    • /
    • 1997
  • Film absorption involves simultaneous heat and mass transfer in the vapor-liquid system. In the present work, the absorption process of water vapor by an aqueous soluton of LiBr flowing inside of the vertical tube was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the heat and mass transfer rate. Particularly the effects of vapor flow conditions on the absorption process were investigated in terms of the vapor Reynolds number. As the vapor Reynolds number increased, the shear stress at the vapor-solution interface also increased. Consequently solution film became thinner at higher vapor flowrate under the co-currentflow condition. Thinner film was capable of higher heat transfer to the wall and leaded to higher absorption rate of the water vapor into the solution film.

  • PDF

압력지연삼투(PRO) 발전 시스템에서 채널 입구 압력차의 영향에 대한 수치해석적 연구 (Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System)

  • 홍성수;류원선;전명석;정귀영
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.68-74
    • /
    • 2014
  • 해수-담수 염도 차 발전을 위한 압력지연삼투(pressure-retarded osmosis: PRO) 시스템의 나권형(spiral wound) 모듈에서 공급채널과 유도채널 사이의 입구 압력차의 영향이 수치적으로 연구되었다. 그리하여 막을 통한 물과 용질-플럭스들의 변화와 전력이 예측되었다. 막을 통한 물-플럭스의 크기는 두 채널 간 입구 압력차가 증가할수록 x축 방향으로 감소하고 y축 방향으로 증가하였다. 반면에 막을 통한 용질-플럭스의 크기는 반대의 경향을 보였다. 공급채널 내 유체의 농도는 y축 방향으로 크게 증가하였고, 유도채널 내 농도는 x축 방향으로 크게 감소하였다. 본 시스템에서 입구 압력차가 1~11 atm일 때 공급채널 내 유량은 8~13% 가량 감소하였고, 유도채널 내 유량은 그만큼 증가하였다. 전력밀도는 입구 압력 차가 증가할수록 증가하다가 감소하였다.

유압펌프용 실린더 블록의 윤활 및 동특성 해석 (Analysis of Lubrication and Dynamic Characteristics of a Cylinder Block for Hydraulic Pump)

  • 안성용;임윤철;홍예선
    • Tribology and Lubricants
    • /
    • 제20권4호
    • /
    • pp.209-217
    • /
    • 2004
  • Lubrication characteristics between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump play an important role in volumetric efficiency and durability of pump. In this paper, a finite element method is presented for the computation of the pressure distribution between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump. Also, a Runge-Kutta method is applied to simulate the cylinder block dynamics of three-degrees of freedom motion. From the results of computation, we can draw two major conclusions. One is related to the fluid film characteristics between a cylinder block and a valve plate and the other is related to the average leakage that is determined by the pressure gradient and the clearance near the discharge port. The numerical results of cylinder block dynamics were compared with the experimental results using eddy-current type gap sensors those are fixed at a pump housing.

유압식 동력조향 장치 설계를 위한 해석 모델 개발 (Analysis Model Development for Designing of Hydraulic Power Steering System)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.158-165
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The agreement between simulation and experimental results shows the validity of the simulation model. The parameter sensitivity analysis such as valve opening area, torsional stiffness for system design are carried out by the analysis and experimental method.

$CO_{2}$이용 열펌프의 실외열교환기 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Outdoor Heat Exchanger for Heat Pump Using $CO_{2}$)

  • 장영수;이민규;안영산;김영일
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.101-109
    • /
    • 2005
  • The purpose of this study is to investigate the performance of outdoor heat exchanger for heat pump using carbon dioxide. Two types of fin and tube heat exchangers (2 rows for type A and 3 rows for B) are tested. Both heat exchangers have counter-cross flow and 1-circuit arrangement. Test results such as heat transfer rate, pressure drop characteristics and temperature distribution in the heat exchanger are shown with respect to mass flow rate of refrigerant and frontal air velocity For cooling mode, the minimum temperature difference between air and refrigerant of type B is smaller than that of type A by $1^{circ}C$, but the pressure loss of air side is much higher for type B by $29\%$. It is found that a large temperature gradient of carbon dioxide during gas cooling Process Promotes thermal conduction through tube wall and fins which results in degradation of heat transfer performance. For heating mode operation, type B heat exchanger shows higher heat transfer performance compared to type A. However, because pressure loss of refrigerant side of type B is much greater than that of type A, the refrigerant outlet pressure of type B becomes lower than that of type A.

偏心된 二重圓管의 環狀部를 지니는 層流流動에서의 連度場 및 溫度場의 確立에 대한 硏究 (A study on the development of the velocity and temperature fields in a laminar flow through an eccentric annular ducts)

  • 이택식;이상산
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.861-869
    • /
    • 1986
  • 본 연구에서는 동시확립문제의 속도장해석에 있어서 단면내의 속도분포에 대 한 일체의 가정을 하지 않고 운동량방정식을 직접 해석하여 단면내의 속도분포를 구하 였다. 또한 Prandtl수, 반경비 및 편심도가 열전달특성에 미치는 영향에 대한 해석 도 수행하였다.

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • 한국환경과학회지
    • /
    • 제19권11호
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.