• 제목/요약/키워드: Flow rate coolant

검색결과 241건 처리시간 0.025초

수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구 (Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack)

  • 이재혁;김보성;이용택;김용찬
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.767-774
    • /
    • 2010
  • 수동공기공급형 고분자 전해질 연료전지는 팬을 이용하여 주변의 공기를 스택에 공급한다. 공급된 공기는 연료로 쓰이는 동시에 스택의 냉각에도 사용된다. 이러한 방식은 시스템에서 가습기, 공기 압축기, 냉각수 설비를 제거할 수 있어서 시스템을 단순화 시키고 경량화 시킬 수 있는 반면 냉각성능은 기존의 냉각수를 이용하는 방식에 비하여 떨어진다. 따라서 시스템의 신뢰성 확보를 위하여 최적의 냉각 성능을 낼 수 있도록 스택을 설계하는 것이 중요하다. 본 연구에서는 고분자 전해질 연료전지 스택의 냉각성능 향상을 위하여 다양한 채널 형상, 공기극의 유량분포, 외부 대류열전달계수의 변화가 스택의 온도분포에 미치는 영향에 대한 전산해석을 수행하였다. 그 결과, 채널의 rib이 두꺼운 경우에 냉각성능이 가장 뛰어났으며 유량을 중앙부에 집중시킨 경우에 고온집중 현상이 감소하였다.

Development of Hard-wired Instrumentation and Control for the Neutral Beam Test Facility at KAERI

  • Jung Ki-Sok;Yoon Byung-Joo;Yoon Jae-Sung;Seo Min-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.359-365
    • /
    • 2006
  • Since the start of the KSTAR (Korea Superconducting Tokamak Advanced Research) project, Instrumentation and Control (I&C) of the Neutral Beam Test Facility (NB-TF) has been striving to answer diverse requests arising from various facets during the project's development and construction phases. Hard-wired electrical circuits have been designed, tested, fabricated, and finally installed to the relevant parts of the system. In relation to the vacuum system I&C, controlling functions for the rotary pumps, a Roots pump, two turbomolecular pumps, and four cryosorption pumps have been constructed. I&C for the ion source operation are the temperature and flow rate signal monitoring, Langmuir probe signal measurements, gradient grid current measurements, and arc detector circuit. For the huge power system to be monitored or safely operated, many temperature measurement functions have also been implemented for the beam line components like the neutralizer, bending magnet, ion dump, and calorimeter. Nearly all of the control and probe signals between the NB test stand and the control room were made to be transmitted through the optical cables. Failures of coolant flow or beam line vacuum pressure were made to be safely blocked from influencing the system by an appropriate interlock circuit that will shut down the extraction voltage application to the system or prevent damages to the vacuum components. Preliminary estimation of the beam power through the calorimetric measurement shows that 87.9% of the total power of the 60kV/18A beam with 200 seconds duration is absorbed by the calorimeter surface. Most of these I&C results would be highly appropriate for the construction of the main NBI facility for the KSTAR national fusion research project.

연소기 노즐에서의 열전달 특성 연구 (Study on Heat Transfer Characteristic in Combustor Nozzle)

  • 남궁혁준;김화중;한풍규;이경훈;김영수;정해승;이상연
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.34-40
    • /
    • 2006
  • 연소기 노즐은 고온 고압의 연소가스를 화학에너지에서 운동에너지로 변환시켜 추력을 발생시킨다. 따라서 노즐 내부 벽면은 고온 고압의 연소가스에 노출되며, 특히 노즐 목에서는 최대 열하중을 받는 구간으로서 열구조적으로 안정성을 확보한 냉각 시스템 설계가 이루어져야 한다. 본 연소기 노즐은 수냉 방식으로서 열전달 효율을 높이기 위해 냉각 채널 구조로 되어 있다. 본 연구에서는 연소기 노즐을 위한 냉각 채널 구조의 기본 설계안에 대해 유동 해석을 수행하고 공급 압력 및 유량 변화에 따른 입/출구 사이의 압력 강하량을 예측하여 초기 형상안에 대한 압력 손실 및 설계 유량 공급을 위한 압력 조건에 대해서 평가하고자 하였다. 최종 선정안에 대해서는 내부 열전달 및 유동장 해석을 수행하여 흐름 및 열구조 안정성을 평가하였다.

  • PDF

터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여- (A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop-)

  • 한규일;김시영;조동현
    • 수산해양교육연구
    • /
    • 제6권1호
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석 (Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV)

  • 이양지;이동호;강영석;임병준
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

중수로 증기발생기 다중 전열관 파단사고시 파단 전열관 수에 대한 영향 분석 (Influence Analysis on the Number of Ruptured SG u-tubes During mSGTR in CANDU-6 Plants)

  • 유선오;이경원
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.37-42
    • /
    • 2022
  • An influence analysis on multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout is performed to compare the plant responses according to the number of ruptured u-tubes under the assumption of a total of 10 ruptured u-tubes. In all calculation cases, the transient behaviour of major thermal-hydraulic parameters, such as the discharge flow rate through the ruptured u-tubes, reactor header pressure, and void fraction in the fuel channels is found to be overall similar to that of the base case having a single SG with 10 u-tubes ruptured. Additionally, as the conditions of low-flow coolant with high void fraction in the broken loop continued, causing the degradation of decay heat removal, the peak cladding temperature (PCT) would be expected to exceed the limit criteria for ensuring nuclear fuel integrity. However, despite the same total number of ruptured u-tubes, because of the different connection configuration between the SG and pressurizer, a difference is foud in time between the pressurizer low-level signal and reactor header low-pressure signal, affecting the time to trip the reactor and to reach the PCT limit. The present study is expected to provide the technical basis for the accident management strategy for mSGTR transient conditions of CANDU-6 plants.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

마이크로 채널 디자인에 따른 온 칩 액체 냉각 연구 (Study of On-chip Liquid Cooling in Relation to Micro-channel Design)

  • 원용현;김성동;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.31-36
    • /
    • 2015
  • 전자소자의 다기능, 고밀도, 고성능, 그리고 소형화는 전자 패키지 기술에 초미세 피치 플립 칩, 3D 패키지, 유연 패키지, 등 새로운 기술 패러다임 전환을 가져왔으며, 이로 인해 패키지 된 칩의 열 관리는 소자의 성능을 좌우하는 중요한 요소로 대두되고 있다. Heat sink, heat spreader, TIM, 열전 냉각기, 등 많은 소자 냉각 방법들 중 본 연구에서는 냉매를 이용한 on-chip 액체 냉각 모듈을 Si 웨이퍼에 제작하고, 마이크로 채널 디자인에 따른 냉각 효과를 분석하였다. 마이크로 채널은 딥 반응성 이온 에칭을 이용하여 형성하였고, 3 종류 디자인(straight MC, serpentine MC, zigzag MC)으로 제작하여 마이크로 채널 디자인이 냉각 효율에 미치는 영향을 관찰하였다. 가열온도 $200^{\circ}C$, 냉매 유동속도 150 ml/min의 경우에서 straight MC가 약 $44^{\circ}C$의 높은 냉각 전후의 온도 차를 보였다. 냉매의 흐름과 상 변화는 형광현미경으로 관찰하였으며, 냉각 전후의 온도 차는 적외선현미경을 이용하여 분석하였다.

경계요소법을 이용한 사출성형금형 냉각시스템의 최적설계 (Optimum design of injection molding cooling system via boundary element method)

  • 박성진;권태헌
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1773-1785
    • /
    • 1997
  • The cooling stage is the very critical and most time consuming stage of the injection molding process, thus it cleary affects both the productivity and the part quality. Even through there are several commercialized package programs available in the injection molding industry to analyze the cooling performance of the injection molding coling stage, optimization of the cooling system has npt yet been accomplished in the literature due to the difficulty in the sensitivity analysis. However, it would be greatly desirable for the mold cooling system designers to have a computer aided design system for the cooling stage. With this in mind, the present study has successfully developed an interated computer aided design system for the injection molding cooling system. The CAD system utilizes the sensitivity analysis via a Boundary Element Method, which we recently developed, and the well-known CONMIN alforuthm as an optimization technique to minimize a weighted combination (objective function) of the temperature non-uniformity over the part surface and the cooling time related to the productivity with side constranits for the design reality. In the proposed objective function , the weighting parameter between the temperature non-uniiformity abd the cooling time can be adjusted according to user's interest. In this cooling system optimization, various design variable are considered as follows : (i) (design variables related to processing conditions) inlet coolant bulk temperature and volumetric flow rate of each cooling channel, and (ii) (design variables related to mold cooling system design) radius and location of each cooling channel. For this optimum design problem, three different radius and location of each cooling channel. For this optimum design problem, three different strategies are suffested based upon the nature of design variables. Three sample problems were successfully solved to demonstrated the efficiency and the usefulness of the CAD system.

증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증 (Verification of SPACE Code with MSGTR-PAFS Accident Experiment)

  • 남경호;김태우
    • 한국안전학회지
    • /
    • 제35권4호
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.