• Title/Summary/Keyword: Flow pump

Search Result 1,786, Processing Time 0.034 seconds

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

Characteristics Analysis of Electromagnetic Pump using LIM (LIM을 이용한 전자기 펌프의 특성해석)

  • Cha, Jea-Keul;Jeon, Mun-Ho;Lee, Jong-Ung;Kim, Chang-Eob
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.80-82
    • /
    • 2005
  • This paper presents the characteristics analysis of an electromagnetic pump using a linear induction motor(LTM). The characteristics of the pump for three molten metals Is analyzed by the magneto hydro dynamics: flow velocity, flow mass and etc. The result of the analysis is that the flow velocity for three molten metals is over 0.3[m/s] at the center of duct.

  • PDF

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.193-201
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.274-282
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

A Study for Numerical Analysis of Flow Variation on Low Pressure Fuel Pump Fluid using Excavator Engine (굴삭기 엔진용 저압연료펌프 유체의 유동변화에 대한 수치해석적 연구)

  • Lee, IL Kwon;Kim, Seung Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.47-53
    • /
    • 2015
  • This paper is to study applying for numerical analysis method for flow field, velocity and pressure of fuel on the low pressure pump using excavator. The pressure distribution of fuel pump certified the linear variation according to rotation angle of rotor. Especially, it knew the fact that the pressure in rotation angle $40^{\circ}$ appeared high outlet and low inlet of fuel pump. Also, this range angle can seek the fact that the leakage flow and velocity are the most increasing. And the more rotor rotation of fuel pump, the more mean outlet flow rate increased in linear. Whenever the gap size decrease with rotor and housing, the discharge flow rate could seek the approaching 0.0712kg/s that consider with theory discharge flow rate calculated from displacement between rotor gear and idle gear.

A Study on Fluid Flow Analysis of High Pressure Positive Displacement Pump without Clearance (클리어런스가 없는 초고압 회전용적형 헬리컬기어 펌프의 유동해석에 관한 연구)

  • Min, Se-Hong;Kim, Ho-Chul
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.33-38
    • /
    • 2015
  • For the purpose of high-pressure and suction of fixed amount, the development of ultra-high pressure rotating helical gear positive displacement pump with no clearance had been proceeded. The CFD analysis was performed to verify the internal pressure and the discharge flow velocity of the pump. Accordingly, a flow analysis were performed by FVM technique and we were unable to obtain a successful result since the fluid domain is separated because the grid is not configured in a row in FVM flow analysis of the fully enclosed type without clearance. Because of these problems, the flow analysis was performed by MPS method which grid configuration is not needed and the internal pressure and the discharge flow velocity of the pump were confirmed through the MPS flow analysis. At 1,000 rpm rotation speed of the rotor, the minimum internal pressure of the pump was 19.5 bar, maximum pressure was 44.6 bar and average pressure was 33.9 bar. And the minimum discharge flow velocity was 64.5 m/s, maximum discharge flow velocity was 84.8 m/s and average discharge flow velocity was 76.1 m/s. Through this study, we could confirm that MPS method was more suitable than FVM method in terms of flow analysis with no clearance. In addition, the relationship of the flow velocity according to the change of ultra-high pressure rotating helical gear positive displacement pump could be identified through this study.

Numerical Simulations of Cavitation Flow in Volumetric Gear Pump (회전 용적형 기어펌프의 캐비테이션 유동 해석)

  • Lee, Jung-Ho;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. Template mesh function in commercial CFD software, PumpLinx, by which 3-D meshes in the complex region between rotor and housing can be readily generated was employed for 3-D flow simulations. For cavitation analysis full cavitation model was included in 3-D simulations. The results showed high pulsation in pressure and flowrate which is implicated in pump vibration and noise. A model test for cavitation visualization was conducted and the results showed good qualitative agreement with numerical prediction.

Effects of Lobe Shapes on the Performance of Roots-Type Vacuum Pump (로브 형상 변화가 루츠형 진공 펌프 성능에 미치는 영향)

  • Kim, H.-J.;Kim, Youn J.;Hwang, Y.-K.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.50-56
    • /
    • 2000
  • The effects of lobe shapes on the leak flow conductance of Roots-type vacuum pump are studied numerically and experimentally. The modelled lobe shape of Roots-type vacuum pump is two-lobe spur gear. The numerical analyses are performed on leak flows in Roots-type vacuum pump. It is numerically calculated using a 4th-order Runge-Kutta method and is compared with experimental results. Results show that for the case of involute lobe shape the total amount of the leak flow conductance is greater than that of cycloid and Cassini oval lobe shapes.

  • PDF

Study on the performance analysis and the optimization of regenerative pump (재생펌프의 성능해석 및 최적화에 관한 연구)

  • Lee, Chan;Sung, Hyung-Jin;Kwon, Jang-Hyuk;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.661-667
    • /
    • 1991
  • A performance of a regenerative pump has been analyzed using various pressure loss correlations. The predicted head and efficiency agree favorably with experimental data, which confirms the validity of the present analysis. In addition, performance improvement is made through the optimization of the open channel geometry configuration and the capacity of the regenerative pump. The optimized pump has better efficiency, higher head and larger flow coefficient. Moreover, its operation range is wider than that of the conventional unit.

A Flow Analysis of a Solution Pump for an Absorption Chiller (흡수식 냉동기용 용액펌프의 유동특성 해석)

  • Bae Wonyoung;Lee Kichoon;Hur Nahmkeon;Jeong Siyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.569-572
    • /
    • 2002
  • In the present study, flow simulations of a solution pump fer an absorption chiller are performed. The results are compared to the experimental data. Since the cavitation is more likely to occur in a solution pump due to Its operation under vacuum condition, and the cavitation was not considered in the present computations, the computed and experimental results show large discrepancies. For more accurate performance prediction of a solution pump, a cavitation model is required in the flow simulation. Flows through an inducer are also studied to see the effect of design parameters on performance characteristics. It is shown from the results that, if not properly designed, recirculation legion may exist near the hub region of the Inducer, and the suction surface may experience higher pressure than the pressure surface of the inducer, which may deteriorate the performance.

  • PDF