• Title/Summary/Keyword: Flow pressure

Search Result 10,158, Processing Time 0.04 seconds

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

Effects of Kurtosis on the Pressure Flow Factor (Kurtosis 변화에 따른 Pressure Flow Factor에 관한 연구)

  • 강민호;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.243-250
    • /
    • 2000
  • In the partial lubrication regime, the roughness effects are most important due to the presence of interacting asperities. An average Reynolds equation using flow factors is very useful to determine effects of surface roughness on partial lubrication. In this paper, the pressure flow factors for Gaussian and non-Gaussian surfaces are evaluated in terms of kurtosis. The effect of kurtosis on pressure flow factor is investigated using random rough surface generated numerically. The pressure flow factor increases with increasing kurtosis in partial lubrication regime(h/$\sigma$<3). As h/$\sigma$increases, the pressure flow factor approach to 1 asymptotically regardless of kurtosis.

  • PDF

A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves (압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기)

  • Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

Effects of Kurtosis on the Pressure Flow Factor (Kurtosis 변화에 따른 Pressure Flow Factor에 관한 연구)

  • 강민호;김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.448-454
    • /
    • 2000
  • The roughness effects are very important due to the presence of interacting asperities in partial lubrication regime. An average Reynolds equation using flow factors is very useful to determine the effects of surface roughness on mixed lubrication. In this paper, the pressure flow factors for surfaces having Gaussian and non-Gaussian distribution of roughness height are evaluated in terms of various kurtosis. The effect of kurtosis on pressure flow factors is investigated using random rough surface generated numerically. The pressure flow factor increases with increasing kurtosis in mixed lubrication regime (h/$\sigma$<3). As h/$\sigma$ increases, the pressure flow factors approach to 1 asymptotically regardless of kurtosis.

Influence of Clothing Pressure on Blood Flow and Subjective Sensibility of Commercial Sports Compression Wear (시판 스포츠 컴프레션 웨어의 의복압이 혈류 및 주관적 감성에 미치는 영향)

  • Kim, Nam Yim;Lee, Hyojeong
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.459-467
    • /
    • 2019
  • Compression wear provides clothing pressure and affects how blood flows. Facilitating a blood flow is one of the most important functions of compression wear. The wearer's sensibility should be considered when designing compression wear. This study instructed participants to put on 5 types of sport compression wear with different pressure levels (CP-1 to CP-5), measured clothing pressure, blood flow level, blood flow rate, and surface temperature, and examined the pressure level that influenced blood flow through a subjective sensibility assessment. An experiment measured the clothing pressure of compression wear available in the market and found that the pressure ranged 0.6-1.1 kPa for the ankle, 0.7-2.3 kPa for the calf, and 0.9-1.9 kPa for the thigh. Meanwhile, blood flow levels and rates significantly increased when participants wore CP-1, which had the highest clothing pressure level, and CP-2 and CP-4 with middle-level pressure. After exercise, CP-2's surface temperature was the highest and revealed that wearing CP-2 facilitated blood flow. CP-2 was evaluated as most positive in the sensibility assessment and showed a clothing pressure of 0.67-1.82 kPa; its pressure for the calf did not surpass 2.0 kPa. Considering positive physical effect of compression wear on blood flow and subjective psychological effect on participants, CP-2 (0.67-1.82 kPa) would have the most suitable clothing pressure level among other types of the wear in this study.

A Numerical Analysis on High Pressure Control Valve for Offshore (해양구조물용 고압 컨트롤 밸브 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Jeong, Hwi-Won;Nam, Tae-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

Various Factors Influencing Thoracic Duct Lymph Flow in the Dogs (임파유통에 영향을 주는 인자에 관한 실험적 연구)

  • Kim, Ki-Whan;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 1975
  • Various factors influencing the lymph flow from thoracic duct were investigated in an attempt to evaluate their contributing degree and the mechanisms. Sixteen mongrel dogs weighing between 10 and 16 kg were anesthetized and polyethylene catheters were inserted into the thoracic duct and femoral veins. Arterial blood pressure, heart rate, central venous pressure, lymph pressure and lymph flow were measured under various conditions. Electrical stimulation of left sciatic nerve, stepwise increase of central venous pressure, manual application of rhythmical depressions onto abdomen, injection of hypertonic saline solution and histamine infusion were employed. Measurement of cental venous pressure was performed through the recording catheter inserted into abdominal inferior vena cava. Changes in central venous pressure were made by an air-ballooning catheter located higher than the tip of the recording catheter in the inferior vena cava. Lymph flow from thoracic duct was measured directly with a graduated centrifuge tube allowing the lymph to flow freely outward through the inserted cannula. The average side pressure of thoracic lymph was $1.1\;cmH_2O$ and lymph flow was 0.40 ml/min or 1.9 ml/kg-hr. Hemodynamic parameters including lymph flow were measure immediately before and after (or during) applying a condition. Stimulation of left sciatic nerve with a square wave (5/sec, 2 msec, 10V) caused the lymph flow to increase 1.4 times. The pattern of lymph flow from thoracic duct was not continuous throughout the respiratory cycle, but was continuous only during Inspiration. Slow and deep respiration appeared to increase the lymph flow than a rapid and shallow respiration. Relationship between central venous pressure and the lymph flow revealed a relatively direct proportionality; Regression equation was Lymph Flow (ml/kg-hr)=0.09 CVP$(cmH_2O)$+0.55, r=0.67. Manual depressions onto the abdomen in accordance with the respiratory cycle caused the lymph flow to increase most remarkably, e.g,. 5.5 times. The application of manual depressions showed a fluctuation of central venous pressure superimposed on the respiratory fluctuation. Hypertonic saline solution (2% NaCl) administered Intravenously by the amount of 10 m1/kg increased the lymph flow 4.6 times. The injection also increased arterial blood pressure, especially systolic Pressure, and the central venous pressure. Slow intravenous infusion of histamine with a rate of 14-32 ${\mu}g/min$ resulted in a remarkable increase in the lymph flow (4.7 times), in spite of much decrease in the blood pressure and a slight decrease in the central venous pressure.

  • PDF

A Study on the Flow Characteristics of an Axial Flow Fan by Unsteady Pressure Measurement (비정상 압력측정을 통한 축류휀 유동특성에 관한 연구)

  • Kang, Chang-Sik;Shin, You-Hwan;Kim, Kwang-Ho;Lee, Du-Yeol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.15-24
    • /
    • 2002
  • This paper presents an experimental study on the unsteady flow phenomena such as leakage flow and rotating stall which have influences on the performance and stability of an axial flow fan. For this study, unsteady pressure were measured using high frequency pressure transducers mounted on the easing wall of rotor passage and analyzed by Double Phase-Locked Averaging Technique. As the flow rate was reduced to near stall point, the pressure difference between the pressure and the suction side of the blade was increased especially new the leading edge and the lowest pressure zone of suction side was gradually developed. From the result of unsteady pressure field on the casing wall, one period of rotating stall was divided into three zones and the flow characteristics on each zone were described in detail.

A Study on Flow Rate Characteristics of a Triangular Separate Bar Differential Pressure Flow Meter according to the Variation of Gas Flow Temperature (유동 가스 온도 변화에 따른 삼각 분리 막대형 차압 유량계 유량 특성에 관한 연구)

  • Kim, Kwang-Il;Yoo, Won-Yuel;Lee, Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.89-94
    • /
    • 2008
  • Differential pressure flow meters which have a shape of triangular separate bar(TSB) were tested for investigating the flow rate characteristics of the flow meters with varying the temperature of the gas flow. Three kinds of the triangular separate bar flow meters whose aerodynamic angles are different one another are used. The mass flow rate of the flow meters are evaluated using a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. A burner system which is similar to gas turbine was used for raising the gas flow temperature. The burner system was operated with varying the air/fuel ratio by controlling both the fuel injection rate from the fuel nozzle and air flow rate from a blower. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter was obtained. The empirical correlation showed linear relationship between the mass flow rate and the non-dimensional parameter H. Also, the mass flow rate characteristics at the TSB flow meter was affected by the gas temperature.

Three Dimensional Flow Structure under Rotating Stall in an Axial Flow Fan (주기적 선회실속이 발성하는 축류홴의 3차원 유동구조)

  • Kang, Chang Sik;Shin, You Hwan;Kim, Kwang Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.105-110
    • /
    • 2002
  • Experimental study was conducted to reveal the instability such as leakage flow and rotating stall in an axial flow fan. For this study, unsteady total pressure probe and multi-hole pressure probe were specially designed for measuring the flow field upstream and downstream of rotor. The measured pressure signal was analyzed by Single and Double Phase Locked Averaging Technique. From the result of total pressure fields at inlet and outlet of the rotor, the useful information on the structure of the stall cell in radial direction was provided. Also, detailed flow measurements were carried out with a specially designed high frequency multi-hole pressure probe, providing some insight to the leakage flow and their interation.

  • PDF