• Title/Summary/Keyword: Flow path

Search Result 991, Processing Time 0.03 seconds

Current Strategy in Endovascular Management for Below-the-Knee Arterial Lesions (무릎 밑 동맥의 혈관 내 치료의 최신 지견)

  • Kyosoo Hwang;Sang Woo Park
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.3
    • /
    • pp.541-550
    • /
    • 2021
  • The below-the-knee arterial tree is the thinnest of all the leg vessels and is an important path for blood flow to the foot. Hence, lesions including stenosis, especially obstruction, may lead to critical limb ischemia which represents the most severe clinical manifestation of peripheral arterial disease. It is characterized by the presence of ischemic rest pain, ischemic lesions, or gangrene attributable to the objectively proven arterial occlusive disease. Typically, the atherosclerotic disease process involving the below-the-knee arterial tree is diffuse in the majority of patients. The cornerstone of therapy is vascular reconstruction and limb salvage. Revascularization should be attempted whenever technically possible, without delay, in patients presenting critical limb ischemia and when the clinical status is not hopelessly non-ambulatory. Therefore, endovascular treatment can become the gold standard for the full range of patients including below-the-knee, limiting the clinical role of the classically trained surgeons.

Analysis of River Disturbance using a GIS(II) (GIS기법을 이용한 하천 교란 실태의 분석(II))

  • Park, Eun-Ji;Kim, Kye-Hyun;Jang, Chang-Lae
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.27-35
    • /
    • 2008
  • Current re-arrangement of rivers and waterways have been made uniformly ignoring characteristics of individual rivers thereby aggravating artificial river restructuring. On the contrary, quantitative techniques to evaluate the aftermath of artificial river disturbance such as uprising of river bed, intrusion of foreign fisheries, and changes of ecological habitats are not available. To establish such quantitative techniques, analysis of the river changes to evaluate the major causes of the river disturbance and its impacts is essential. Therefore, research for proposing a method which can be applied for the development of techniques to investigate river disturbance according to the major factors for the domestic rivers using airphotos and GIS techniques was preceded. In this study, the study area on the downstream of the river was selected and analysis of river disturbance using preceding method was done to confirm the benefit of analyzing river disturbance using GIS techniques. Trend analysis of the waterway sinuosity and changes of the flow path leaded to detailed verification of the river disturbance for specific location or time period, and this enabled to generate relatively accurate numbers representing sinuosity of the waterway and relevant changes. Also, it is possible to predict the effect on the current re-arrangement of the river and waterway to river flow using the analysis of past river change. It is necessary to establish GIS based proper measures for environmental river restoration using the results from this study and future works.

  • PDF

Analysis of Two-Dimensional Pollutant Transport in Meandering Streams (사행하천에서 오염물질의 2차원 거동특성 해석)

  • Oh, Jung-Sun;Seo, Il-Won;Kim, Young-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.979-991
    • /
    • 2004
  • In this study, RMA2 and RMA4, the 2-D depth-averaged models, were employed to simulate the two-dimensional mixing characteristics of the pollutants in the natural streams. The velocity and depth were first calculated using RMA2, 2-D hydrodynamic model, and then the resulting flow field was inputted to RMA4, 2-D water quality model, to compute the concentration field. RMA models were verified using the velocity and concentration data measured in S-curved meandering channel. The results showed that the RMA2 model simulated well the phenomenon that the maximum velocity line is located at the Inner bank of meandering channel, and the RMA4 model was well adapted to reproduce the general mixing behavior and the separation of tracer clouds. Comparing model simulations with measured data in the field experiments, RMA2 model simulated well general flow field and tendency that the maximum velocity line skewed toward the outer bank which were found in field experiments. The simulations of RMA4 model showed that the center of the tracer cloud tends to follow the path in which the maximum velocity occurs. In this study, the dispersion coefficients are fine-tuned based on the measured coefficients calculated using field concentration data, and the results show reasonable agreement with predictive equations.

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

A Bottleneck Search Algorithm for Digraph Using Maximum Adjacency Merging Method (최대 인접 병합 방법을 적용한 방향 그래프의 병목지점 탐색 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.129-139
    • /
    • 2012
  • Given digraph network $D=(N,A),n{\in}N,a=c(u,v){\in}A$ with source s and sink t, the maximum flow from s to t is determined by cut (S, T) that splits N to $s{\in}S$ and $t{\in}T$ disjoint sets with minimum cut value. The Ford-Fulkerson (F-F) algorithm with time complexity $O(NA^2)$ has been well known to this problem. The F-F algorithm finds all possible augmenting paths from s to t with residual capacity arcs and determines bottleneck arc that has a minimum residual capacity among the paths. After completion of algorithm, you should be determine the minimum cut by combination of bottleneck arcs. This paper suggests maximum adjacency merging and compute cut value method is called by MA-merging algorithm. We start the initial value to S={s}, T={t}, Then we select the maximum capacity $_{max}c(u,v)$ in the graph and merge to adjacent set S or T. Finally, we compute cut value of S or T. This algorithm runs n-1 times. We experiment Ford-Fulkerson and MA-merging algorithm for various 8 digraph. As a results, MA-merging algorithm can be finds minimum cut during the n-1 running times with time complexity O(N).

Performance Improvement of Single Chip Multiprocessor using Concurrent Branch Execution (분기 동시 수행을 이용한 단일 칩 멀티프로세서의 성능 개선)

  • Lee, Seung-Ryul;Kim, Jun-Shik;Choi, Jae-Hyeok;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.61-71
    • /
    • 2007
  • The instruction level parallelism, which has been used to improve the performance of processors, expose its limit. The change of a control flow by a branch miss prediction is one of the obstacles that restrict the instruction level parallelism. The single chip multiprocessors have been developed to utilize the thread level parallelism. However, we could not use the maximum performance of the single chip multiprocessor in case of executing the coded programs without considering the multi-thread. In order to overcome the two performance degradation factors, in this paper, we suggest the concurrent branch execution method that applies to the multi-path execution method at a single chip multiprocessor. We executes all two flows of the conditional branch using the idle core processor. Through this, we can improve the processor's efficiency with blocking the control flow termination by the branch instruction and reducing the idle time. We analyze the effects of concurrent branch execution proposed in this paper through the simulation. As a result of that, concurrent branch execution reduces about 20% of idle time and improves the maximum 10% of the branch prediction accuracy. We show that our scheme improves the overall performance of maximum 39% compared to the normal single chip multiprocessor and maximum 27% compared to the superscalar processor.

Experimental Study of the Heat Transfer Rate of the Plate Fin-Tube Condenser for a Household Refrigerator (냉장고용 판형 핀-관 응축기의 열전달 성능에 관한 실험적 연구)

  • Son, Young-Woo;Lee, Jang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4802-4808
    • /
    • 2014
  • A plate-fin tube type heat exchanger has a lighter weight, approximately 30%, than the conventional circular-fin type condenser of household refrigerator. Because the low weight means low cost, it can have significant effects on the growth of related businesses if similar performance can be guaranteed. To check the possibility of the use of such a plate fin-tube condenser, experimental evaluations were performed in this study. Four different condensers including a conventional circular fin-tube condenser were used for the test. A well designed refrigerant supply system was used to supply similar conditions with a refrigerator, and the heat transfer rate and pressure drops of air side were measured precisely. As a result, the plate fin-tube type condensers showed a lower heat transfer rate of more than 13% than the conventional circular fin-tube type condenser, but the air side pressure drop was reduced and the heat transfer per unit weight was increased. Therefore, it shows the possibility of the use of a plate fin-tube type condenser after optimizing the air flow path and increasing the air flow to make a similar heat transfer rate.

Pressurization Characteristics of Piezoelectric-Hydraulic Pump Adopting a Ball-Thin Plate Spring Type Check Valve (볼-박판 스프링 형 체크밸브가 적용된 압전유압펌프의 가압 특성)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 2018
  • In this study, a new check valve was studied to improve the load pressure of a brake system with a small piezoelectric-hydraulic pump. During the pressurization process, the steady-state pressure at the load is affected by the ratio of the cross-sectional area of the check valve the chamber pressure and load pressure. Since the flow path cover of the check valve is made wider than the cross-sectional area of the output flow to prevent backflow, a method of reducing the area ratio is proposed for a higher load pressure by mounting an additional mass to a thin plate spring type check valve. To identify the effect of mounting an additional mass to the existing check valve on the load pressure, a simple brake system with a small piezoelectric-hydraulic pump was modeled using a commercial code AMESim. The AMESim modeling was verified by comparing the simulation results with the experimental results of the pump the existing check valve. The additional mass was added to the verified AMESim modeling and higher load pressure was able to be obtained through simulation. The 35% performance improvement in load pressure identified by carrying out pressurization test of the brake system after adopting the new check valve the small piezoelectric-hydraulic pump.

Relationship between Organizational Culture, Organizational Trust and Organizational Performance of Special Guard Organization (특수경비조직의 조직문화와 조직신뢰 및 조직성과의 관계)

  • Kim, Hyo-Joon
    • Korean Security Journal
    • /
    • no.29
    • /
    • pp.59-86
    • /
    • 2011
  • The purpose of this study is to investigate the relationship between organizational culture, organizational trust and organizational performance of special guard organization. This study had selected special guards from 4 different private guard companies which are in Seoul area on March 2011. Using Judgement Sampling, 161 samples were drawn for the use of final analysis. Questionnaire used in this study was consisted of the total 42 question, and executed frequency analysis, factor analysis, reliability analysis, correlation analysis, multiple regression analysis, path analysis by SPSSWIN 18.0. The Cronbach's ${\alpha}$ value which represents the reliability of the survey came out to be over .592. The results are following: First, the organizational culture of special guard organization affects organizational trust. That is, when a developmental, reasonable, consensual and hierarchical culture is activated, cognitive emotional and behavioral trust is increased. Second, organizational culture of special guard organization affects organizational performance. That is, when a reasonable and consensual culture is activated, job-satisfaction becomes higher. On the other hand, when a developmental, reasonable and hierarchical culture is activated, organizational flow becomes higher. Third, organizational trust of special guard organization affects organizational performance. That is, when a cognitive emotional and behavioral trust works highly, job-satisfaction and organizational flow is increased. Fourth, Special security organization's organizational culture affects as a result in organization result. As well as organizational culture exerts direct influence on organization outcome, I exert effect that is indirect in organization outcome through action trust which is low rank factor of organization trust.

  • PDF