• Title/Summary/Keyword: Flow over a Cylinder

Search Result 154, Processing Time 0.021 seconds

Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method (차분 래티스볼츠만법에 Subgrid 난류모델의 적용)

  • Kang Ho-Keun;Ahn Soo-Whan;Kim Jeong-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

A Theoretical and Experimental Study on the Prediction of Volumetric Efficiency for 4-Cylinder Diesel Engine (4기통 디젤기관의 체적효율 예측에 관한 수치해석 및 실험적 연구)

  • 이재순;윤건식;심현수;박상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1928-1939
    • /
    • 1992
  • In this study, a computer program has been developed which predicts the variation of the volumetric efficiency with the change of design of the intake system effectively by the analysis of the flow in each part of a multi-cylinder compression ignition engine. For the calculation of the flow in the intake and exhaust systems, the method of characteristics has been used, and the double Wiebe's function has been adopted for the calculation of the heat release rate in the cylinders. The accuracy of presented method has been proved through the comparison between the simulation and experimental results over the various engine speeds and intake pipe lengths.

Investigation of the Conjugate Heat Transfer and Wall Thermal Boundary Conditions (복합열전달과 열경계조건에 관한 연구)

  • Chang, Byong Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • The effects of wan thermal boundary condition were investigated for a uniform wall temperature, a uniform wall heat flux, and for coupled heat conduction In the channel wall with transverse rectangular ribs. Numerical investigations for steady laminar flow show behavior similar to that observed experimentally in the separated flow region for flow over a cylinder. Conjugate heat transfer with a low solid-fluid thermal conductivity ratio does not lead to the same results as for the uniform heat flux boundary condition, and heat transfer reversal is found on the back sides of the ribs.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(3) - Velocity Profile(1) (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(3) - 유속분포(1))

  • Park, Chanjun;Sung, Jaeyong;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.169-182
    • /
    • 2016
  • This paper is the third investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, several assumptions used in the steady flow bench were examined and the flow characteristics were estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75B position. From these works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Therefore, the understanding of the detail velocity profiles is very important to keep discussing the issues about the steady flow evaluation method. For this purpose, the planar velocity profiles were measure at 1.75B position by particle image velocimetry and the characteristics were examined according to the valve angles and lifts. The results show that the planar velocity profiles of 11, 16, $21^{\circ}$ valve angle heads according to the lift are similar to each other, however, that of $26^{\circ}$ angle is an exceptional case in the all aspects. In addition, the swirl behaviors are not apparent up to 6~8 mm lift under the $21^{\circ}$ angle and somewhat arranged motions are observed over the whole plane near the highest lift. At this point, the narrower the angle, the lower the lift at which the swirl motions become clear. On the other hands, when the angle is $26^{\circ}$, the center of swirl is always farthest from the cylinder center and only the indistinct swirl is observed even if at the highest lift. Also, all the swirl centers are quite apart from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B regardless the valve angle. Related to the tangential velocity along with the radial direction, the bands of the velocity distribution are very wide and the mean velocities of cylinder center basis are lower than the velocity which is assumed in the ISM evaluation. Lastly, the mean tangential velocity profiles of swirl center basis are sometimes higher than that of ISM-assumed up to 0.6 non-dimensional distance less than 6mm lift, however, as the lift increases the profiles are different according to the angles and profile $11^{\circ}$ is the most closed to the ideal profile. Consequently, the real velocity profile is far from the assumption of ISM evaluation.

A Study on the Characteristics of Lift and Drag Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력과 항력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.712-718
    • /
    • 2016
  • A heat exchanger tube array in a heat recovery steam generator is exposed to hot exhaust gas flow that can cause flow induced vibrations, which could damage the heat exchanger tube array. The characteristics of flow induced vibration in the tube array need to be established for the structural safe operation of a heat exchanger. Several studies of the flow induced vibrations of typical heat exchangers have been conducted and the nondimensional PSD (Power Spectral Density) function with the Strouhal number, fD/U, had been derived using an experimental method. The present study examined the results of the previous experimental research on the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array was determined from the present CFD analysis. The present CFD analysis introduced circular cylinder tube array and calculated using unsteady laminar flow for the tube array. The characteristics of lift and drag fluctuations over the cylinder tube array was investigated. The derived nondimensional lift and drag PSD was compared with the results of the previous experimental research and the characteristics of lift and drag PSD for a circular cylinder tube array was established from the present CFD study.

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

Asymmetric Vortices around a Body at High Angle of Attack Subsonic Flow (아음속 유동하의 고 받음각 물체 주위의 비대칭 와류 특성 연구)

  • Park, Mee-Young;Kim, Wan-Sub;Lee, Jae-Woo;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.33-38
    • /
    • 2008
  • Numerical investigation of asymmetric vortices at high angles of attack subsonic flow is performed using three-dimensional Navier-Stokes equations. A small bump has been carefully selected and attached near the nose of an ogive cylinder to simulate symmetric vortices. Selected bump shape does develop asymmetric vortices and is verified using Lamont's experimental results. By changing the angle of attack, Reynolds numbers, and Mach numbers, the characteristics of asymmetric vortices are observed. The angle of attack which contributes significantly to the generation of asymmetric vortices are over 30 degrees. By increasing Mach number and Reynolds number asymmetric vortices, hence the side forces show decreasing trend..

  • PDF

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulation (I) - Numerical Test - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.973-983
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes is evaluated for large eddy simulation of turbulent flow. Two turbulent flows are considered: turbulent channel flow at Re = 23000 and flow over a circular cylinder at Re = 3900. The effects of numerical dissipation on the finite differencing and aliasing errors and the subgrid-scale stress are investigated. It is shown through the simulations that compact upwind schemes are not suitable for LES, whereas the fourth order-compact centered scheme is a good candidate for LES provided that proper dealiasing of nonlinear terms is performed. The classical issue on the aliasing error and the treatment of nonlinear terms is revisited with compact difference schemes.

Unsteady laminar boundary layer over a heated circular cylinder started impulsively from rest (갑자기 출발하는 가열된 원통 주위의 비정상 충류경계층 유동에 관한 수치적 연구)

  • 김재수;장근식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.262-270
    • /
    • 1987
  • A numerical method is presented which can solve the unsteady momentum and thermal boundary layers, coupled through the agency of buoyancy force, over a heated circular cylinder impulsively started from rest. By linearizing the nonlinear finite difference equations without sacrificing accuracy, numerical solutions are obtained at each time step without iteration. To get rid of the requirement of excessive number of grid points in the region of reversed flow, special form of transformed variables are used, by which the computational boundary layer thickness is maintained almost constant. These numerical properties enable the method to easily handle the region of reversed flow and how the singularity develops in the interior of the boundary layer. In order to investigated the thermal effects on the skin friction, heat flux, displacement thickness and on the separation, we have successfully solved three different cases of the buoyancy parameter .alpha.(Gr/Re$^{2}$).

Natural Convection in the Annulus between a Horizontal Conducting Tube and a Cylinder with Spacers (수평전도관(水平傳導管)과 원통(圓筒)사이에 격판(隔板)을 가진 환상공간(環狀空間)에서의 자연대류(自然對流))

  • Lee, Sang-Hoon;Lee, Bum-Chul;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.86-97
    • /
    • 1987
  • Natural convection in the annulus between a horizontal conducting tube and a cylinder with spacers has been studied by 2-dimensional numerical method with finite difference techniques. The effects of Rayleigh number, conductivities of conducting tube and spacer, and position of spacers were studied analytically. In case of vertical spacers, the maximum local Nusselt number appears at ${\theta}{\approx}50^{\circ}$ in a conducting tube and ${\theta}{\approx}30^{\circ}$ in an outer cylinder, The local Nusselt numbers show positive values on the lower spacer, but negative values on the surface of the upper spacer. In case of horizontal spacers, the flow over the spacer is more active than that of under the spacer as the Rayleigh number increases. The maximum local Nusselt appeares at ${\theta}=180^{\circ}$ in a conducting tube and at ${\theta}=0^{\circ}$ in an outer cylinder. The local Nusselt numbers show positive values on the upward surface, but negative values on the downward surface of spacer. As the dimensionless conductivity increases, the mean Nusselt number remarkably increases at $K_w/K_f<48$ and show almost even at $K_w/K_f{\ge}48$. The mean Nusselt number of a conducting tube with vertical spacers is 5.12 percent less and with horizontal spacers is 11.33 percent less than that of a conducting tube without spacer at $Ra=10^4$, Pr = 0.7 and $K_w/K_f=48$.

  • PDF