• Title/Summary/Keyword: Flow of Fluid

Search Result 7,375, Processing Time 0.031 seconds

Development of Model to Evaluate Thermal Fluid Flow Around a Submerged Transportation Cask of Spent Nuclear Fuel in the Deep Sea

  • Guhyeon Jeong;Sungyeon Kim;Sanghoon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • Given the domestic situation, all nuclear power plants are located at the seaside, where interim storage sites are also likely to be located and maritime transportation is considered inevitable. Currently, Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radioactive waste from a submerged transportation cask in the sea. Therefore, secure technology is necessary to assess the impact of immersion accidents and establish a regulatory framework to assess, mitigate, and prevent maritime transportation accidents causing serious radiological consequences. The flow rate through a gap in a containment boundary should be calculated to determine the accurate release rate of radionuclides. The fluid flow through the micro-scale gap can be evaluated by combining the flow inside and outside the transportation cask. In this study, detailed computational fluid dynamic and simplified models are constructed to evaluate the internal flow in a transportation cask and to capture the flow and heat transfer around the transportation cask in the sea, respectively. In the future, fluid flow through the gap will be evaluated by coupling the models developed in this study.

On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Panakhli, Panakh G.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.287-316
    • /
    • 2017
  • This paper studies the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results related to the influence of the problem parameters on the frequency response of the normal stress acting on the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid compressibility on these responses are also presented and discussed.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

Internal Flow of a Two-Bladed Helical Inducer at an Extremely Low Flow Rate

  • Watanabe, Satoshi;Inoue, Naoki;Ishizaka, Koichi;Furukawa, Akinori;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopump. However, various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate region. The cavitation surge occurring at partial flow rates is known to be strongly associated with the inlet back flow. In the present study, in order to understand the detailed structure of internal flow of inducer, we firstly carried out the experimental and numerical studies of non-cavitating flow, focusing on the flow field near the inlet throat section and inside the blade passage of a two bladed inducer at a partial flow rate. The steady flow simulation with cavitation model was also made to investigate the difference of flow field between in the cavitating and no-cavitating conditions.

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

A Two-Dimensional Study of Transonic Flow Characteristics in Steam Control Valve for Power Plant

  • Yonezawa, Koichi;Terachi, Yoshinori;Nakajima, Toru;Tsujimoto, Yoshinobu;Tezuka, Kenichi;Mori, Michitsugu;Morita, Ryo;Inada, Fumio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • A steam control valve is used to control the flow from the steam generator to the steam turbine in thermal and nuclear power plants. During startup and shutdown of the plant, the steam control valve is operated under a partial flow conditions. In such conditions, the valve opening is small and the pressure deference across the valve is large. As a result, the flow downstream of the valve is composed of separated unsteady transonic jets. Such flow patterns often cause undesirable large unsteady fluid force on the valve head and downstream pipe system. In the present study, various flow patterns are investigated in order to understand the characteristics of the unsteady flow around the valve. Experiments are carried out with simplified two-dimensional valve models. Two-dimensional unsteady flow simulations are conducted in order to understand the experimental results in detail. Scale effects on the flow characteristics are also examined. Results show three types of oscillating flow pattern and three types of static flow patterns.

A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line (관로에서 점성유체 유동의 압력파 전달에 관한 연구)

  • Kim, H.O.;Na, G.D.;Mo, Y.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF

A Twin Impulse Turbine for Wave Energy Conversion -The Performance under Unsteady Airflow-

  • Alam, M M Ashraful;Sato, Hideki;Takao, Manabu;Okuhara, Shinya;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • A twin unidirectional impulse turbine for wave energy conversion has been suggested in our previous study, and the performance under unsteady flow has been investigated by quasi-steady analysis. In the present study, the performance of twin impulse turbine under unsteady flow condition has been investigated by unsteady analysis of Computational fluid dynamics. As a result, the mean efficiency of twin unidirectional impulse turbine under unsteady flow is lower than the maximum efficiency of unidirectional impulse turbine. Moreover, it is verified that airflow goes backward in the reverse turbine in low flow rates.

Transient Buoyant Flows of a Stratified Fluid in a Vertical Channel

  • Park, Jun-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.656-664
    • /
    • 2001
  • A theoretical analysis is performed to describe the qualitative behavior of transient buoyant flows in a vertical channel. Consideration is given to the case of a fluid with a pre-existing stratification. The fluid motion is generated by giving impulsive anti-symmetric step-changes in temperature at the vertical left ad right sidewalls. The qualitative character of the flow is shown to be classified in the Rayleigh number (Ra)-Prandtl number ($sigma$) diagram. The transitory approach to the steady state can be monotonic or oscillatory, depending on ($sigma$-1)$^2$$pi$$^4$ 4$sigma$$R_a$. The prominent characteristics of time-dependent flow are discussed for large $R_a$. The profiles of temperature and velocity in the transient phase are depicted, which disclose distinctive time scales of motion. The transient process is shown to be sensitive to the Prandtl number. The detailed evolutions of flow and temperature fields are illustrated for large $R_a$.

  • PDF