• 제목/요약/키워드: Flow noise

검색결과 1,723건 처리시간 0.025초

모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구 (LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor)

  • 황철홍;이창언
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

흐름 전위에 기초한 자연 전위 탐사법의 원리 및 활용 (A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential)

  • 송서영;남명진
    • 지구물리와물리탐사
    • /
    • 제21권4호
    • /
    • pp.231-243
    • /
    • 2018
  • 흐름 전위는 지하 공극 내 유체의 흐름에 의해 발생하는 자연 전위로 이러한 흐름 전위를 이용한 자연 전위 탐사는 유체 흐름 뿐만 아니라 지층 유체에 대한 정보도 파악할 수 있는 탐사법이다. 지하 매질과 유체 사이에 존재하는 전기 이중층과 같이 입자가 대전하고 있을 때 여러 원인에 의해 유체가 유동하여 발생하는 계면 동전기 현상 중 하나인 흐름 전위는, 발생 기작이 복잡하고 측정 전위 값이 비교적 작아 잡음에 취약하다는 어려움도 있지만 이를 이용한 자연전위 탐사는 인공적인 송신원이 없어 탐사가 용이할 뿐만 아니라 반복성도 좋기 때문에 지층 유체 모니터링 탐사에 적용이 확대되고 있다. 이 논문에서는 지금까지 흐름 전위의 발생 기작에 대한 연구와 지배 방정식들을 정리하여 설명한 뒤, 매질의 물리적 특성 변화에 따른 흐름 전위 반응 특성 및 다양한 국내외 유체 흐름 자연 전위 탐사의 사례 분석을 수행하였다. 이 기술보고에서는 흐름 전위에 대한 이해도를 높임과 동시에 적용 가능한 다양한 분야를 소개함으로써, 국내에서의 흐름 전위를 이용한 자연전위 탐사의 현장 적용 방안을 제시하고자 한다.

CFD를 활용한 수처리공정 대형관에서 압력수 혼합공정 평가 (Evaluation of Pressurized Water Mixing of Big Pipe with CFD at Water Treatment Process)

  • 조영만;유현철;장경혁;정용준
    • 한국물환경학회지
    • /
    • 제37권3호
    • /
    • pp.168-174
    • /
    • 2021
  • Mixing is a very important unit in water treatment process. A mechanical stirring method is generally used for mixing, but recently, the use of pressurized water mixing method (pump diffusion flash mixer) has gained interest because it is more advantageous in terms of mixing time, noise, energy consumption, and maintenance. The following conclusions were obtained from the study of pressurized water mixing method by Computational Fluid Dynamics. Firstly, the mixing degree in the pipe increased as the density of water increased. Secondly, even if the relative velocity between flow rate in the pipe and the pressurized water was constant, the mixing degree decreased as the flow velocity in the pipe increased. Thirdly, the stronger the injection energy the higher the mixing degree. It was also found that the mixing degree was greatly affected by the injection velocity as compared to the injection flow amount. Finally, the required energy to achieve 95% mixing degree at the distance of 10 times diameter in big pipes of 500 mm to 3000 mm was 0.3 to 4.5 kJ. The result of this study could be used in the process design of injection with water purification chemicals, such as, ozone, chlorine, and coagulant.

프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석 (Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve)

  • 박정우;하룬 아흐마드 칸;정은아;권성자;윤소남;이후승
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

헬리컬형 자기유체역학(MHD) 해수 추진기 소형 성능시험장치 개발 (Development of Small Performance Test Device for Helical-Type Magnetohydrodynamic (MHD) Seawater Propulsion Thruster)

  • 장두희;조종갑;장대식;김선호;진정태;류창수
    • 대한조선학회논문집
    • /
    • 제59권1호
    • /
    • pp.46-54
    • /
    • 2022
  • A magnetohydrodynamic (MHD) seawater propulsion thruster has been proposed to reduce propeller noise, propeller pitting, and vessel vibration originated from the propeller cavitation. The MHD thruster was also focused to overcome the limitation of propulsion velocity for the special purpose of marine ships. The research trends and key technologies in the worldwide leading countries are reviewed for the development of MHD propulsion thrusters in Korea. A small performance test device was developed firstly with a conventional solenoid magnet of ≤0.6 Tesla and a helical-type cylindrical duct(inner diameter of 5 cm) of thruster. The artificial seawater was fabricated by a salt solution including a conductivity of 5~6 S/m. The measured flow velocity of artificial seawater in the test device was 0.03~0.42 m/s (0.06~0.84 Knot) with a magnetic field strength of 0.6 Tesla and the applied currents of 10~80 A including the change of anode materials. It was found that the flow direction of seawater was reversed by the directional change of applied current in the solenoid magnet.

수중운동체 주위 와류유동 저감을 위한 부가물 형상 설계기법 연구 (Research on the Design Methods of Appendages to Reduce Vortex Flows Around Underwater Vehicles)

  • 여상재;홍석윤;송지훈
    • 해양환경안전학회지
    • /
    • 제30권2호
    • /
    • pp.252-261
    • /
    • 2024
  • 수중운동체에는 필수적 기능을 담당하는 함교, 러더와 같은 다양한 부가물들이 장착된다. 이들 부가물과 선체의 접합부에는 유선의 박리로 인해 다양한 와류가 생성된다. 이러한 와류는 수중운동체의 추진기로 유입되어 수중방사소음의 증가와 같은 부정적 효과를 야기해 스텔스 성능의 향상을 위해서는 반드시 저감되어야 한다. 본 연구에서는 부가물과 선체의 접합부에서 생성되는 말발굽와류(HSV)와 뿌리와류(RV)를 저감하는데 효과적인 와류저감장치(VRD)에 대한 설계기준을 도출하였다. 먼저, 접합부 와류의 레이놀즈 상사특성 만족 여부를 분석함으로써 설계기준 도출에 부가물의 제원과 유속의 영향을 레이놀즈수로 대체하였다. 또한 VRD의 형상을 정의하기 위해 베지어 곡선을 활용해 VRD의 3차원 표면을 파라미터화하였다. 이후, 와류저감을 위한 VRD의 설계기준 도출을 위해 다양한 제원의 VRD의 와류저감 성능을 분석함으로써 최적의 길이 대 높이 비율이 선정되었다. 최종적으로 대상 범위의 부가물들에 대해 최적 비율을 만족하는 다양한 크기의 VRD 성능이 비교 분석되었다. 이를 종합하여 임의의 부가물에 대해서도 와류저감 성능을 나타낼 수 있는 VRD의 무차원화 설계기준이 도출되었다.

Low Frequency Noise and It's Psychological Effects

  • Eom, Jin-Sup;Kim, Sook-Hee;Jung, Sung-Soo;Sohn, Jin-Hun
    • 대한인간공학회지
    • /
    • 제33권1호
    • /
    • pp.39-48
    • /
    • 2014
  • Objective: This entire study has two parts. Study I aimed to develop a psychological assessment scale and the study II aimed to investigate the effects of LFN (low frequency noise) on the psychological responses in humans, using the scale developed in the study I. Background: LFN is known to have a negative impact on the functioning of humans. The negative impact of LFN can be categorized into two major areas of functioning of humans, physiological and psychological areas of functioning. The physiological impact can cause abnormalities in threshold, balancing and/or vestibular system, cardiovascular system and, hormone changes. Psychological functioning includes cognition, communication, mental health, and annoyance. Method: 182 college students participated in the study I in development of a psychological assessment scale and 42 paid volunteers participated in the study II to measure psychological responses. The LFN stimuli consisted of 12 different pure tones and 12 different 1 octave-band white noises and each stimulus had 4 different frequencies and 3 different sounds pressure levels. Results: We developed the psychological assessment scale consisting of 17 items with 3 dimensions of psychological responses (i.e., perceived physical, perceived physiological, and emotional responses). The main findings of LFN on the responses were as follows: 1. Perceived psychological responses showed a linear relation with SPL (sound pressure level), that is the higher the SPL is, the higher the negative psychological responses were. 2. Psychological responses showed quadric relations with SPL in general. 3. More negative responses at 31.5Hz LFN than those of 63 and 125Hz were reported, which is deemed to be caused by perceived vibration by 31.5Hz. 'Perceived vibration' at 31.5Hz than those of other frequencies of LFN is deemed to have amplified the negative psychological response. Consequently there found different effects of low frequency noise with different frequencies and intensity (SPL) on multiple psychological responses. Conclusion: Three dimensions of psychological responses drawn in regard to this study differed from others in the frequencies and SLP of LFN. Negative psychological responses are deemed to be differently affected by the frequency, SPL of the LFN and 'feel vibration' induced by the LFN. Application: The psychological scale from our study can be applied in quantitative psychological measurement of LFN at home or industrial environment. In addition, it can also help design systems to block LFN to provide optimal conditions if used the study outcome, .i.e., the relations between physical and psychological responses of LFN.

수중운동체의 유체계수 추정에 관한 연구 (A study on the hydrodynamic coefficients estimation of an underwater vehicle)

  • 양승윤;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.121-126
    • /
    • 1996
  • The hydrodynamic coefficients estimation (HCE) is important to design the autopilot and to predict the maneuverability of an underwater vehicle. In this paper, a system identification is proposed for an HCE of an underwater vehicle. First, we attempt to design the HCE algorithm which is insensitive to initial conditions and has good convergence, and which enables the estimation of the coefficents by using measured displacements only. Second, the sensor and measurement system which gauges the data from the full scale trials is constructed and the data smoothing algorithm is also designed to filter the noise due to irregular fluid flow without changing the data characteristics itself. Lastly the hydrodynamic coefficients are estimated by applying the measured data of full scale trials to the developed algorithm, and the estimated coefficients are verified by full scale trials.

  • PDF

비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어 (Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface)

  • 안병천;장효환
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

두 연속 덕트를 전파하는 압축파의 수치해석적 연구 (Numerical study of compression waves passing through two-continuous ducts)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.