• Title/Summary/Keyword: Flow noise

Search Result 1,719, Processing Time 0.026 seconds

A study on the flow and aeroacoustic characteristics of the sirocco fan of OTR (Over The Range) (후드겸용 전자레인지 시로코홴의 유동 및 소음특성에 관한 연구)

  • Jeon, Wan-Ho;Rew, Ho Seon;Song, Sung-Bae;Shon, Sang-Bun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.17-23
    • /
    • 2004
  • Aeroacoustic characteristics of sirocco fan used in Over-The-Range (OTR) has been analyzed in this paper. A microwave hood combination over the gas range is short for the OTR. The flow phenomena of the double-sided sirocco fan was analyzed numerically and experimentally by using commercial code and three dimensional PIV for flow visualization. Also, microphone array is used in order to understand acoustic characteristics of OTR. Two dimensional unsteady flow and acoustic simulation is tried to qualitatively estimate the effects of tonal noise and broadband noise on the overall sound pressure level. It is found that tonal sound is generated from the strong interaction between the impeller and cutoff while broadband sound is generated from the strong secondary flows along the scroll surface. To reduce the noise level, the V-shape cut-off was applied to improve the sound quality by reducing tonal noise. So the peak noise at BPF (Blade Passing Frequency) was almost reduced. The shape of flow-guide to suppress the secondary flow over the scroll surface was carefully checked. It is found that this affects flow pattern at the fan exit and reduces the broad band noise. Through this numerical and experimental study, the sound pressure level was lowered by 4dBA compared to that of the previous fan at the operating point.

Characteristics of Flow Induced Noise from a Ball Valve Used for a Gas Pipeline Using an Acoustic Camera (음향 카메라를 이용한 가스 파이프라인 볼밸브 유동소음 특성)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.106-112
    • /
    • 2017
  • The present study describes flow induced noise generated from a ball valve used for a gas pipeline. Noise generation from a ball valve mainly induces by interference between unstable(or fluctuating) leakage flow and pipe wall when the ball valve is working closed or opened. To measure the positions of the noise source and the amplitude of noise with respect to measuring frequencies, a commercial acoustic camera is introduced. Noise characteristics generated by the ball valve have been performed by four valve opening rates: 30, 50, 70 and 100 percents. It is noted that 100 percent opening rate means that the valve is fully opened. Throughout the experimental measurements using the acoustic camera, the location of the noise source and the noise amplitude with respect to the frequencies for the test ball valve are clearly evaluated. It is found that the dominant frequencies come from the fluctuating flow at the downstream of the ball valve for four opening rates are observed between 3,000Hz and 3,200Hz. Maximum noise amplitude comes from the ball valve reaches 75dB at the valve opening rate of 50 percent.

Noise Reduction of PDP TV Cooling Fan System through Parameter Analysis (인자 분석을 통한 플라즈마 디스플레이 패널(Plasma Display Panel) 텔레비전에서의 냉각 홴 시스템 소음 저감)

  • Kim, Kyu-Young;Choi, Min-Goo;Lee, Duck-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.107-114
    • /
    • 2006
  • The present experimental study deals with noise reduction and improvements in cooling performance in a plasma display panel (PDP) television (TV). The main ideas of the fan system noise reduction are maintenance of uniform inflow condition and reduction of the system loss, ${\Delta}P.$ The discrete noise is mainly related with the inflow condition therefore removing the structure which distorts inflow makes the discrete noise reduction. The broadband noise in PDP TV is related with the system losses which result from the presence of the fan downstream obstacle, PDP rear case. Through the modification of the distance and preventing the leakage flow between the fan and rear case, we can obtain the system loss and broadband noise reduction. Additionally we can reduce fan rotating speed because of increased flow rate which obtains from the reduction of system loss (resistance). Finally, 4.2 dB(A) noise reduction and $10\%$ increase in flow rate are achieved. From these results, we show that the reduction of system loss is the most effective way of the fan system noise reduction.

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms (파랑관통형 선형의 선체유기 유동소음특성에 관한 연구)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seo, Jeong-Hwa;Rhee, Shin-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.619-627
    • /
    • 2018
  • As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.

Prediction of Specific Noise Based on Internal Flow of Forward Curved Fan

  • Sasaki, Soichi;Hayashi, Hidechito;Hatakeyama, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.80-91
    • /
    • 2009
  • In this study, a prediction theory for specific noise that is the overall characteristic of the fan has been proposed. This theory is based on total pressure prediction and broadband noise prediction. The specific noises of two forward curved fans with different number of blades were predicted. The flow around the impeller having 120 blades (MF120) was more biased at a certain positions than the impeller with 40 blades (MF40). An effective domain of the energy conversion of MF40 has extended overall than MF120. The total pressure was affected by the slip factor and pressure loss caused by the vortex flow. The suppression of a major pressure drop by the vortex flow and expansion of the effective domain for energy conversion contributed to an increase in the total pressure of MF40 at the design point. The position of maximum relative velocity was different for each fan. The relative velocity of MF120 was less than that of MF40 due to the deviation angle. The specific noise of MF120 was 2.7 dB less than that of MF40 due to the difference in internal flow. It has been quantitatively estimated that the deceleration in the relative velocity contributed to the improvement in the overall performance.

Numerical Investigation Into Flow and Acoustic Performances of Intake Mufflers in Reciprocating Compressor (왕복동식 압축기 흡입계 머플러의 유동/음향 특성에 대한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung;Park, Jaeseong;Kim, Haeseung;Lee, Hyojae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.532-538
    • /
    • 2015
  • In a reciprocating compressor, highly impulsive pressure fluctuations induced by a reciprocating piston give rise to serious noise and vibration problems. A muffler is frequently used to reduce this impulsive noise, but also has adverse effects on compressor performance due to additional pressure drop and heat transfer of refrigerants through it. Therefore, the flow and acoustic performances of mufflers used in a compressor should be considered simultaneously. In this study, both of flow and acoustic performances of mufflers are investigated using computational fluid dynamic techniques by solving full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations. For validation purpose, the numerical method is initially applied to predict the transmission loss of a simple expansion muffler, and its predicted results show good agreements with theoretical and experimental results. Then, the flow and acoustic performances of an existing muffler is numerically investigated. On the basis of the analysis results, a new muffler is purposed and its performances are compared with the existing one. Improved performances of the new muffler are confirmed.

A Technique for Calculations of Power Flow in Structures Using MSC/NASTRAN and PCL (MSC/NASTRAN 및 PCL을 이용한 구조물 내의 진동 파워 흐름 해석 기법)

  • 홍진숙
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.303-313
    • /
    • 2001
  • The identification of power flow in dynamically loaded structures Is essential in the analysis of structure-borne noise. However there are no general purpose tools to estimate powers flow. To make matters worse. It is very difficult to measure it. The power flow can be formulated in terms of balance forces(ELFORCE) at each element and velocities at the associated node obtained with MSC/NASTHAN. In this paper the procedure which is consist of the computations of the balance forces of al1 elements and the velocities at all nodes using MSC/NASTRAN. The calculations of the power f1ow at each element using PCL(PATRAN Command Language) and the Preparation of post -processes is set UP.

  • PDF

Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan (축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발)

  • Chung, Dong-Kyu;Hong, Soon-Seong;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF

An Experimental Study of Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 실험적 연구)

  • Jung, Ji-Won;Cho, Hyung-Hee;Choi, Myung-Ryul;Seong, Pyoung-Yong;Lee, Kyoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1789-1794
    • /
    • 2004
  • The present study investigates flow characteristics in an optical disc drive. Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in the personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity components and velocity spectrum are obtained using the laser Doppler anemometry (LDA). The results show that the front holes reduce now-induced noise and the position of pickup body affects flow near the window. In addition, il is possible for cooling of heat sources in an optical disc drive through measuring the flow fields under the tray.

  • PDF

Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics (공력음향학을 이용한 축류홴의 삼차원 소음 해석)

  • Kim, Joo-Hyung;Kim, Jin-Hyuk;Shin, Seungyeol;Kim, Kwang-Yong;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.