• Title/Summary/Keyword: Flow noise

Search Result 1,719, Processing Time 0.03 seconds

Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method (하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석)

  • Seo, Jung-Hee;Moon, Young-J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.

Numerical Investigation on the Characteristics of Flow-Induced Noise in a Centrifugal Blower

  • Lee, Chanyoung;Jeong, Taebin;Ha, Kyoung-Ku;Kang, Shin-Hyoung
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • In the present study, a computational analysis of the flow in a centrifugal blower is carried out to predict a performance and to explain noise characteristics of the blower. Unsteady, 3D Navier-Stokes equations were solved with k-${\varepsilon}$ turbulence model using CFX software. CFD results were compared with the experimental data that is acquired from an experiment conducted with the same blower. The pressure fluctuation in the blower was transformed into the frequency domain by Fourier decomposition to find the relationship between flow behaviors and noise characteristics. Sound pressure level (SPL) which is obtained from wall pressure fluctuation at impeller outlet represents relative overall sound level of the blower well. Sound spectra show that there are some specific peak frequencies at each mass flow rate and it can be explained by flow pattern.

Experimental Study on Air Flow Characteristics of Axial Dual-blade Fan (축류형 이중 블레이드 팬의 공기 유동 특성에 관한 실험적 연구)

  • Kim, Hae-Ji;Lee, Yong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 2014
  • To ventilate indoor spaces, axial single-blade fans are widely used in various areas, such as schools, houses, offices, and restaurants. Recently, axial single-blade fans were developed to realize energy efficiency and noise reduction improvements. Here, an experimental study of the air flow characteristics of an axial dual-blade fan is conducted. The characteristics of the axial dual-blade fan were tested via an air flow analysis and with prototypes. For the performance of the fan, the flow rate, power consumption, and noise were evaluated. The result showed that the axial dual-blade fan uses less power and produces less noise in comparison with an axial single-blade fan.

Development of Flow Control Valves for Hot Water Distribution Manifolds (온수분배기용 유량제어밸브의 개발)

  • Kwon, Woo-Chul;Yoon, Joon-Yong;Yoo, Sun-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2010
  • The developed control valves, installed on the hot water distribution manifolds for the floor heating system, consist of the balancing valves and the shut-off valves. The balancing valve was designed to improve the flow control performance and to reduce the noise emitted from the valve by modification of the general V port. The port of the shut-off valve was designed with two ceramic plates, working by rotating upper plate, to improve the duration and to reduce the noise. For the evaluation of the new valves, the flow rate was measured and noise level test was carried out. The test results showed that the error of the flow rate accuracy test for the flow balance of each manifold circuit was less than ${\pm}3%$ and the noise level was less than 35 dB(A).

Characteristics of Flow-Induced Noise in the Suction Nozzle of a Vacuum Cleaner with a Double-Blade Fan (이중 블레이드 팬이 장착된 진공청소기 브러쉬의 유동소음 특성)

  • Park, I-Sun;Sohn, Chae-Hoon;Oh, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.205-213
    • /
    • 2011
  • The characteristics of noise generation in the suction nozzle of a vacuum cleaner are analyzed numerically and experimentally. First, the flow resistance induced by each element in the suction nozzle of a vacuum cleaner with a double-blade rotary fan is investigated numerically and its relation with flow-induced noise and suction performance is examined in an anechoic room. The flow resistance and vorticity in the suction nozzle are calculated, and it is found that they are closely related to flow-induced noise and that the upper limit of noise reduction is only 4 dBA. This upper limit can be achieved by changing the design of the brush nozzle. Two methods for noise reduction by enlargement of flow-inlet area and by optimization of the number of blades are tested. Finally, the effects of each method are verified experimentally.

Computation of serrated trailing edge flow and noise using a hybrid zonal RANS-LES

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.414-419
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

  • PDF

Computation of Serrated Trailing Edge Flow and Noise Using a Hybrid Zonal RANS-LES (혼합 영역 RANS-LES를 이용한 톱니 뒷전 유동 및 소음장의 계산)

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.444-450
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

Study on the flow and noise characteristic analysis for cooling fan in a server computer (서버용 냉각팬의 유동 및 소음 특성 분석에 관한 연구)

  • Lim, Tae-Gyun;Jeon, Wan-Ho;Hong, Hyun-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.773-778
    • /
    • 2014
  • Recently both high performance and low noise for a cooling fan used in a server computer have been required. In this study, we measured the noise characteristics for a small cooling fan used in a computer or in a server, and compared the computational data to measured ones. SC/Tetra V10 and FlowNoise V4.3 was used for the unsteady flow field and the aeroacoustic analysis, respectively. The aeroacoustic analysis results have the good agreement with measured data within 3% errors in overall SPL. In the noise spectrum, we could find the peak tonal noise at lower frequency than 1st BPF, and confirm that the reason is caused by the asymmetry of bell mouth shape.

  • PDF

The Noise Analysis of Ship HVAC System Based on GUI Modeling (GUI Modeling을 기반으로한 선박의 HVAC System 소음 해석)

  • 이철원;김노성;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1300-1305
    • /
    • 2001
  • One of the main noise sources in cabin onboard ships is HVAC system. Up to now, the HVAC system designer manually calculates the HVAC system noise, or uses the program that is generally based on text user interface. In such a case, it is difficult to use the program and also to obtain the flow induced noise. In this study, the HVAC noise analysis program has been developed, which is based on GUI user interface that include 3.D modelling and model modification modules. For calculation of the insertion loss of HVAC system elements, NEBB experimental data and plane wave theory are used. And in order to obtain the flow rate information in each HVAC elements which is used to calculate the flow induced noise calculation, Global Converging Newton-Rapson Method is used.

  • PDF

Effect of the Inner Material and Pipe Geometry on the Flow and Induced Radiated Noise (파이프 내 흡음재 및 형상에 따른 유동 및 방사소음에 대한 수치해석적 연구)

  • Lee, Su-Jeong;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • Noise and vibration, which occur in a pipe, are usually caused by the interaction between the turbulent flow and nearby wall. Although it can be estimated by a simple case of expanded pipes having complex turbulent flow, the radiated noise is highly dependent upon the size, shape, and thickness of the given model. In addition, the radiated noise propagates and has serious interference and destabilization effects on the surrounding systems, which can lead to fatigue fracture and failure. This study took advantage of the variety of commercial programs, such as FLUENT (flow solver), NASTRAN (dynamic motion solver of complex structures) and VIRTUAL LAB (radiated noise solver) based on the boundary element method (BEM), to understand the underlying physics of flow noise. The expanded pipe has separation and a high pressure drop because of the abrupt change in the cross-section. Based on the radiated noise calculations, the noise level was reduced to around 20 dB in the range of 100-500 Hz.