• Title/Summary/Keyword: Flow map

Search Result 605, Processing Time 0.031 seconds

Yield Mapping of a Small Sized Paddy Field (소구획 경지에서의 벼 수확량 지도 작성)

  • 정선옥;박원규;장영창;이동현;박우풍
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.135-144
    • /
    • 1999
  • An yield monitoring system plays a key role in precision farming. An yield monitoring system and a DGPS were implemented to a widely used domestic combine for yield mapping of a small sized paddy field, and yield mapping algorithms were investigated in this study. The yield variation in the 0.1ha rice paddy field was measured by installing a yield flow sensor and a grain moisture sensor at the end of the clean grain elevator discharging grains into a grain tank. Yield map of the test filed was drawn in a point map and a linear interpolated map based on the result of the field test. The size of a unit yield grid in yield mapping was determined based on the combine traveling speed, effective harvesting width and data storing period. It was possible to construct the yield map of a small sized paddy field.

  • PDF

Construction of Map for Transient Condition of a Sl Engine and Refinement of Intake Air Model & Fuel Model (가솔린 엔진의 비정상 상태에 대한 Map 구성과 공기 및 연료 모델 개선)

  • 심연섭;강태성;강승표;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • For gasoline engines, a three-way catalytic converter that has the maximum efficiency at stoichiometric air/fuel ratio is used to clean up the exhaust gas. So a precise air/fuel ratio control is necessary to maximize the catalytic conversion efficiency, For a transient condition, a fred-forward air/fuel ratio control method that estimates the air mass inducted into a cylinder is being used. In this study, a fuel injection map that makes an accurate air/fuel ratio control possible was constructed for the very same transient condition. For the same condition above, intake air model and fuel model were refined so that fuel injection values based on air mass through a throttle valve and intake manifold pressure are equal to the map values.

An Experimental Study on Flow Characteristics of R134a in a Small Diameter Tube (세관내 R-134a의 유동특성에 관한 실험적 연구)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1307-1312
    • /
    • 2007
  • The flow characteristics of R-134a in a small diameter tube was investigated experimentally. An experimental apparatus was consisted of a magnetic gear pump, an evaporator, a sight-glass, a condenser and a measurement instruments. The sight-glass for flow pattern observations was located at the inlet and outlet of the evaporator. The experiment was carried out to show the flow characteristics of R-134a in a small diameter tube. Mass flux of refrigerants was ranged from 100 to 1000 $kg/m^2s$, the saturation temperature was $30^{\circ}C$. In the flow patterns during evaporation, the annular flow in a 2 mm inner diameter tube occurred at a relatively lower quality and mass velocity, compared to that in a 8 mm inner diameter tube. The evaporation flow pattern in a small diameter tube has been shown major deviations with the Baker, Mandhane and Taitel-Dutler's flow pattern maps but it was similar to the Dobson's flow pattern map.

  • PDF

Motion Field Estimation Using U-disparity Map and Forward-Backward Error Removal in Vehicle Environment (U-시차 지도와 정/역방향 에러 제거를 통한 자동차 환경에서의 모션 필드 예측)

  • Seo, Seungwoo;Lee, Gyucheol;Lee, Sangyong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2343-2352
    • /
    • 2015
  • In this paper, we propose novel motion field estimation method using U-disparity map and forward-backward error removal in vehicles environment. Generally, in an image obtained from a camera attached in a vehicle, a motion vector occurs according to the movement of the vehicle. but this motion vector is less accurate by effect of surrounding environment. In particular, it is difficult to extract an accurate motion vector because of adjacent pixels which are similar each other on the road surface. Therefore, proposed method removes road surface by using U-disparity map and performs optical flow about remaining portion. forward-backward error removal method is used to improve the accuracy of the motion vector. Finally, we predict motion of the vehicle by applying RANSAC(RANdom SAmple Consensus) from acquired motion vector and then generate motion field. Through experimental results, we show that the proposed algorithm performs better than old schemes.

Study on the Terrestrial LiDAR Topographic Data Construction for Mountainous Disaster Hazard Analysis (산지재해 위험성 분석을 위한 지상 LiDAR 지형자료 구축에 관한 연구)

  • Jun, Kye Won;Oh, Chae Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.105-110
    • /
    • 2016
  • Mountainous disasters such as landslides and debris flow are difficult to forecast. Debris flow in particular often flows along the valley until it reaches the road or residential area, causing casualties and huge damages. In this study, the researchers selected Seoraksan National Park area located at Inje County (Inje-gun), Gangwon Province-where many mountainous disasters occur due to localized torrential downpours-for the damage reduction and cause analysis of the area experiencing frequent mountainous disasters every year. Then, the researchers conducted the field study and constructed geospatial information data by GIS method to analyze the characteristics of the disaster-occurring area. Also, to extract more precise geographic parameters, the researchers scanned debris flow triggering area through terrestrial LiDAR and constructed 3D geographical data. LiDAR geographical data was then compared with the existing numerical map to evaluate its precision and made the comparative analysis with the geographic data before and after the disaster occurrence. In the future, it will be utilized as basic data for risk analysis of mountainous disaster or disaster reduction measures through a fine-grid topographical map.

A Study on the Characteristics of NOx Reduction by Urea-SCR System for a Light-Duty Diesel Engine (Urea-SCR 시스템에 의한 소형 디젤엔진의 NOx 저감 특성에 관한 연구)

  • Nam, Jeong-Gil;Lee, Don-Chool;Choi, Joo-Yol;Choi, Jae-Sung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.521-527
    • /
    • 2005
  • The effects of an urae injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine are investigated experimentally. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection must be precisely metered and then I used the urea syringe pump. I have tested 4 kinds of items that were with the EGR base engine and without the EGR engine. Then I tested each urea-SCR(Selective Catalytic Reduction) system. As the results, I can caculate the SUF(Stoichiometric Urea Flow) and visualize the NOx results by variation of engine speed and engine load. Also, I can make the NOx map. Therfore, I knew that NOx reduction effects of the urea-SCR system without the EGR engine were better than the with EGR base engine except of low load and low speed.

  • PDF

Grid-Based KlneMatic Wave STOrmRunoff Model (KIMSTORM)(I) - Theory and Model - (격자기반의 운동파 강우유출모형 개발(I) - 이론 및 모형 -)

  • Kim, Seong-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.303-308
    • /
    • 1998
  • A grid-based KInematic were STOrm Runoff Model (KIMSTORM) with predicts temporal and spatial distributions of saturalted orerland flow, subsurface flow and stream flow in a watershed was developed. The model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each grid element by using grid-based water balance of hydrologic components. The model which is programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture within the watershed.

  • PDF

A Study on Damage Scale Tacking Technique for Debris Flow Occurrence Section Using Drones Image (드론영상을 활용한 토석류 발생구간의 피해규모 추적기법)

  • Shin, Hyunsun;Um, Jungsup;Kim, Junhyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.517-526
    • /
    • 2017
  • In this study, we analyzed the accuracy of elevation, slope, and area to the damage scale of the debris flow using the drones to track the details of the debris flow that method was between the digital topographical map(1/5,000) method and GPS ground survey method. The results are summarized as follows. At first, in the comparison of elevation, the value by the drones was 3.024m lower than the digital topography map, but in case of slope the average slope was $1.20^{\circ}$ and the maximum slope was $10.46^{\circ}$ which was higher by the drones image. Secondly, the difference area is $462m^2$ between on the digital topographic map and the drones image was calculated high, because it is determined by reflecting the uplift of the terrain as a point that calculated more accurate than the digital topographic map. Therefore, when compared with the existing method, the drone image method was very effective in terms of time and manpower.

Flow regime transition criteria for vertical downward two-phase flow in rectangular channel

  • Chalgeri, Vikrant Siddharudh;Jeong, Ji Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.546-553
    • /
    • 2022
  • Narrow rectangular channels are employed in nuclear research reactors that use plate-type nuclear fuels, high heat-flux compact heat exchangers, and high-performance micro-electronics cooling systems. Two-phase flow in narrow rectangular channels is important, and it needs to be better understood because it is considerably different than that in round tubes. In this study, mechanistic models were developed for the flow regime transition criteria for various flow regimes in co-current air-water two-phase flow for vertical downward flow inside a narrow rectangular channel. The newly developed criteria were compared to a flow regime map of downward air-water two-phase flow inside a narrow rectangular channel with a 2.35-mm gap width under ambient temperature and pressure conditions. Overall, the proposed model showed good agreement with the experimental data.

Flow Directions and Source of the Dongmakgol Tuff in the Cheolwon Basin, Korea (철원분지 동막골응회암의 유향과 공급지)

  • Hwang, Sang-Koo;Kim, Jae-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.51-65
    • /
    • 2010
  • The Dongmakgol Tuff is a stratigraphic unit which is composed of voluminous ignimbrites in the Cheolwon basin. The ignimbrites belong to pumice-rich vitric tuffs that show eutaxitic to parataxitic fabrics from fiamme or pumice clasts. They are almost densely welded and strongly flattened, but often parallel aligned and stretched. Also they exhibit flow indicators such as flow lineations, imbrications, tensional cracks and boudins from their alignment and/or elongation, and lithic and pumice clasts show lateral grading in their average maximum diameter. Flow direction map from the lineations, asymmetric structures and lateral grading diagram indicate that the Dongmakgol Tuff has a source from its southwestern part near a boundary between southern Dongmakri and northern Gomunri, and is considered that the ignimbrites took emplacement processes of laminar flows during the final stage of flowage and the flow lineations are from the result of shear stress during that times.