• Title/Summary/Keyword: Flow loss

Search Result 2,451, Processing Time 0.027 seconds

Prediction of Reactor Coolant Pump Performance Under Two-Phase Flow Conditions (이상유동시 원자로 냉각재 펌프의 성능 예측)

  • Lee, S.;Bang, Y.S.;Kim, H.J.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.179-189
    • /
    • 1994
  • A performance of reactor coolant pump in two-phase flow is examined using the pump geometric conditions and the performance of the pump in single-phase flow. Wall friction loss of the reactor coolant pump in single-phase flow is prdicted using the Truckenbrodt boundary layer theory, and the head loss in two-phase flow is predicted with calculated well friction loss and separation loss coefficients. The analysis results are compared with the Combustion Engineering pump test data. The effect of two-phase multiplier on the peak clad temperature in Loss-of-Coolant Accident is also examined using the RELAP5 and the results indicate the importance of its accuracy.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer (압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실)

  • Cheon, Joo Hong;Kang, Dong Bum;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s$ = 3.75% and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s$ = 3.75%. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

Experimental Study on Effects of Inlet Boundary Layer Thickness and Boundary Layer Fence in a Turbine Cascade (터빈 캐스케이드 입구경계층 두께와 경계층 펜스 효과에 대한 실험적 연구)

  • Jun, Y.M.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.853-858
    • /
    • 2000
  • The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency. It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the fellowing research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the Passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than endwall loss so that it dominates secondary loss. In these cases the proper fence hight is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations.

  • PDF

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

Analysis of Acoustic Characteristics of Muffler including Flow effects (유체유동을 포함한 소음기의 음향 특성 해석)

  • Kim, Hyung-Tae;Jeong, Weu-Bong;Kim, Heui-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.861-864
    • /
    • 2006
  • In general, 4-pole parameter and three-point method are used for predicting transmission loss which is one of characteristics of Muffler using CAE tools. However, these mehtods show different results from experiment when the flow effects are presented in practical model. In this parer, to overcome these problems, both Fluent and.Sysnoise are used to analyze the performance of extended inlet/outlet muffler including flow effects with varying flow velocity at inlet of duct. Flow fields and quadrupole source is calculated by Fluent. And Sysnoise is used to analyze acoustic performances of muffler with quadrupole source data extracted from Fluent. Finally, the variation of transmission loss is estimated according to various inlet flow velocity.

  • PDF

A study on the performance of the perforated-tube muffler (다공형 소음기의 성능에 관한 연구)

  • 권영필;현길학;서기원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.85-96
    • /
    • 1990
  • The object of this study is to develop the computer program to predict the transmission loss of a perforated tube muffler with mean flow, and to investigate the influence of porosity and mean flow on the performance of the muffler. The numerical model is made by dividing the muffler into small segments and estimating the transfer matrices for each segment. The computer program is developed for the calculation of the transmission loss of a through-or cross-flow perforated muffler. The experiment is performed for the measurement of the transmission loss and/or the pressure drop for various porosity and flow velocity. From the comparison between computation and experiment, is known that the numerical model agrees well with the experimental result. The effect of porosity and flow velocity on the acoustic performance and the flow resistance of a muffler is presented.

  • PDF

Numerical simulation of tip clearance flows through linear turbine cascades (선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구)

  • Lee, Hun-Gu;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

Flow Characteristics of T-junction Pipe (T-합류관의 유동특성)

  • Kim, M.K.;Bae, D.S.;Kwon, O.B.;Yang, J.K.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.528-533
    • /
    • 2005
  • This paper presents the study of flows at T-junction pipe with orifices. Experiments were carried out for several flow rates, orifice sizes, and pressure differences. Numerical simulations were also done to get more data for the wide range of flow rates. Experimental results and numerical ones are in a good agreement. Due to the effect of T-junction part, the flow rates at the lateral pipe are greater than those at straight pipe for the same pressure differences. When orifices were added, the effects of T-junction part on the ratio of flow rates and the ratio of loss coefficients reduced.

  • PDF

An Experimental Study on Energy Losses in Steam Turbine Cascade Flow (증기터빈 익렬유동의 에너지손실에 관한 실험적 연구)

  • ;;Ahn, Hyung-Joon;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3022-3030
    • /
    • 1995
  • The irreversibility of condensation process in the supersonic flow of steam turbine cascade causes the entropy to increase and the total pressure loss to be generated. In the present study, in order to investigate the moist air flow in two dimensional steam turbine cascade made as the configuration of the last stage tip section of the actual steam turbine moving blade, the static and total pressures along suction side of the blade are measured by pressure taps and Pitot tube. The flow field is visualized by a Schlieren system. The effects of stagnation temperature and the degree of supersaturation on energy loss and entropy change in the flow are clearly identified.

Total Pressure Loss in a Supersonic Nozzle Flow with Condensation (凝縮을 隨伴하는 超音速 노즐흐름의 全壓損失)

  • 강창수;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.582-589
    • /
    • 1988
  • A rapid expansion of moist air or steam in a supersonic nozzle gives rise to condensation, and the total pressure of the flow is decreased due to this irreversibility of condensation phenomenon. In the present paper, the loss in total pressure during the condensation process has been studied, by numerical analysis and pressure measurement, in the case of moist air expanding in a supersonic nozzle. The effects of the degree of supersaturation at the stagnation condition and expansion rate of the nozzle on the total pressure loss have been studied. The length of the region where the total pressure decreases during the condensation process is longer than that of the nonequilibrium condensation region, and of difference between the length of these two increases with the increase of the degree of supersaturation at the stagnation condition. Furthermore, the larger the expansion rate of the nozzle and the higher the temperature and the degree of supersaturation at the reservoir are, the larger the total pressure loss of the flow becomes. And, it is turned out that the total pressure loss be about 2 to 8 percent in the present study.