• Title/Summary/Keyword: Flow level

Search Result 4,333, Processing Time 0.051 seconds

Cerebral blood flow enhancement device using Blood Oxygen Level Sensor (Blood Oxygen Level Sensor를 이용한 대뇌혈류증가 장치)

  • Lim, Jung-hyun;Joh, In-Hee;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1083-1089
    • /
    • 2018
  • Surgery to increase cerebral blood flow is one of the treatment methods of cerebral infarction. In order to supplement this invasive method, non-invasive devices have been introduced that use human blood pressure to pressurize the extremities to increase cerebral blood flow. However, the problem of poor speed and accuracy was raised. In this paper, the perfusion index of each arm is measured by applying pressure to both arms using Blood Oxygen Level Sensor to improve the accuracy of measurement and measurement time. The pressure applied to the arm is calculated by using the pressure value obtained from the arm. Like the existing blood pressure measuring cerebral blood flow increasing device, the blood flow can be increased by more than 20% and the measurement time can be shortened, so that it can be selectively used for the patient with cerebral infarction.

Changes in Peak Expiratory Flow, Forced Expiratory Volume in 1 Second and Peak Cough Flow Related to Functional Level and Measurement Position in Patients With Duchenne Muscular Dystrophy (뒤시엔느 근 이영양증 환자에서 기능 수준과 측정 자세에 따른 최대호기유량, 1초간노력성호기량 및 최대기침유량의 변화)

  • Kim, Ki-Song;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • It is important to find the effective position for cough and sputum clearance in respiratory physical therapy. The purpose of this study was to compare the changes in peak expiratory flow (PEF), forced expiratory volume in 1 second ($FEV_1$), and peak cough flow (PCF) related to functional level and measurement position in patients with Duchenne muscular dystrophy. Twenty one subjects were classified into three functional levels, and measurements was undertaken in three different measurement positions (upright sitting, $45^{\circ}$ reclining and supine). Vitalograph PEF/FEV DIARY was used to measure PEF and $FEV_1$, and Ferraris Pocket Peak was used to measure PCF. Mixed two-way analysis of variance and Bonferroni post-hoc test were used for statistical analysis. The results of the study were as follows: 1) Significant main effects for measurement position were found. 2) PEF was the highest in upright sitting, followed by $45^{\circ}$ reclining, and supine in order. 3) $FEV_1$ in upright sitting and $45^{\circ}$ reclining were significantly greater compared with that in supine. 4) PCF in upright sitting and $45^{\circ}$ reclining were significantly greater compared with that in supine. 5) No significant main effects for functional level were found in PEF, $FEV_1$, and PCF. 6) No significant functional level by measurement position interactions were found in PEF, $FEV_1$, and PCF. Therefore, it is concluded that upright sitting and $45^{\circ}$ degree reclining positions are recommended for effective cough and sputum clearance.

  • PDF

Complexity of Groundwater Flow System in a Site Reflected in the Fluctuations of Groundwater Level and Temperature (지하수위와 수온 변동에 나타난 부지 규모 지하수 흐름장의 복잡성)

  • Jonghoon Park;Dongyeop Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.563-570
    • /
    • 2022
  • This study was objected to show the complexity of groundwater flow system in a site-scale area as a design parameter of the groundwater monitoring network for early detection of pollutant leakage from a potential source of groundwater contamination (e.g., storage tank). Around the tanks, three monitoring wells were installed at about 22~25 m deep and groundwater level and temperature had been monitored for 22 months by 2-minute interval, and then compared with precipitation and temperature data from nearby weather station. Annual variation of groundwater level and its response to precipitation event, variation of groundwater temperature and delayed response to that of atmospheric temperature indicate the complexity of groundwater flow and flow paths even in the relatively small area. Thus, groundwater monitoring network for early detection of contaminant leakage should be designed with full consideration of the complexity of groundwater flow system, identified from the detailed hydrogeological investigation of the site.

HYDRAULIC ANALYSIS OF OXYGEN TRANSFER THROUGH AIR ENTRAINMENT IN RIPARIAN RIFFLES

  • Kim, Jin-Hong
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.127-139
    • /
    • 2003
  • This paper presents the hydraulic analysis of the oxygen transfer through the air entrainment and the relationships between the efficiency of the oxygen transfer and the hydraulic parameters in the riparian riffles. Field survey on the pool-riffle formation of the river reach and the measurements of the oxygen transfer in the riffles were performed. Air entrainment occurred more frequently in the edged gravels rather than in the round and edgeless ones, and it was formed mainly from behind the trailing edges of the gravels. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number, but to be not closely related to the particle diameter. Average value of oxygen transfer in the riffles of study area was about 0.085, which shows good efficiency compared with results of smooth chute. Variation of the water level, which increases in proportion to the flow velocity and the flow discharge, seems to make the air entrainment more active, but has not been verified quantitatively. Relationships between the air entrainment and the variation of the water level must be considered in the further study.

  • PDF

Fan Noise Prediction Method of Air Cooling System (공기 냉각 시스템의 홴 소음 예측 기법)

  • Lee, Chan;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

NUMERICAL SIMULATION OF FLOW PAST A SQUARE CYLINDER SUBMERGED UNDER THE FREE SURFACE (자유수면 아래 정방형 실린더 후류 유동에 관한 수치해석적 연구)

  • Ahn, Hyungsu;Yang, Kyung-Soo;Park, Doohyun
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • In the present study, two-dimensional numerical investigation of flow past a square cylinder beneath the free surface has been performed to identify the effects of presence of the free surface. An immersed boundary method was adopted for implementation of the cylinder cross-section in a Cartesian grid system. Also, a level-set method was used to capture the interface of two fluids. To prevent transition to three-dimensional flow, Reynolds number chosen for this simulation was 150. The cases for Froude number 0.2 and gap ratio(h/D) between 0.25 and 5.00 were examined. At the specific Reynolds number, we study the effects of gap ratio on flow characteristics around a square cylinder by computing flow fields, force coefficients and Strouhal number.

Flow Characteristics for PIV Visualization at Junction Duct (PIV 가시화에 의한 합류덕트에서의 유동특성)

  • Kim, M.K.;Kwon, O.B.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.45-50
    • /
    • 2005
  • Characteristics of flows at T-junction duct with and without orifices are investigated in this paper. Experiments and PIV visualization were carried out for several flow rates. Two-dimensional PIV experimental apparatus was decided by numerical analysis. PIV visualization was also coded to visualize flow fields at junctions for two-dimensional case. For the PIV visualization system, Grey-Level Cross-Correlation particle tracking algorithm was used to calculate the flow fields. Vinyl chloride polymer particles of $100{\sim}150{\mu}m$ of diameter are used in this visualization. The PIV visualization results showed relatively good agreement with Experimental data.

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

Sludge Transportation by the Submerged Barrier (수중격벽을 이용한 슬러지이송)

  • Park, Suk Gyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.857-865
    • /
    • 2006
  • The submerged barrier, employed in a reactor, divided a reactor into sludge settling zone and mixing zone according to flow type. In spite of mixing in the mixing zone, the lower part of sludge settling zone than the top of barrier was in a steady flow due to the barrier, which prevented the turbulent flow, produced from the mixing zone, from being diffused into the sludge settling zone. Therefore, the sludges in the mixing zone flowed backward over the barrier into the upper part of the sludge settling zone by turbulent flow and settled down in the sludge settling zone by the force of gravity. When barrier/water level ratio was 0.5, most sludges almost did not settle down in tile sludge settling zone because the sludges were directly affected by the turbulent flow, generated from mixer in the mixing zone. At 0.63 of barrier/water level ratio, sludge in the middle part of sludge settling zone rocked from side to side weakly. And sludge in the lower part became piled up on the bottom over this ratio. After 10minutes of sludge settling, the lower part of sludge settling zone was over 5000mg/L of sludge concentration although intial sludge concentration was 2300mg/L. By using the submerged barrier and the flow types, it could transfer sludge from this to that.