• Title/Summary/Keyword: Flow friction loss

Search Result 185, Processing Time 0.023 seconds

Effect of Rib Angle on Thermal Performance in a Two Wall Convergent/Divergent Channel with Ribs on One Wall (양측면 수축/확대 사각채널에서 한면에 설치된 리브의 각도가 열성능에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.195-200
    • /
    • 2015
  • The thermal performance in the channels with two-wall rectangular convergent/divergent cross-sectional areas along the axial distance was investigated experimentally. The ribbed rectangular convergent/divergent channels were manufactured with a fixed rib height (e) = 10 mm and the ratio of rib spacing (p) to height (e) = 10. Three different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$) were each placed on the channel's one sided wall only. The convergent channel of $D_{ho}/D_{hi}=0.67$ and the divergent channel of $D_{ho}/D_{hi}=1.49$ were considered. The ribbed divergent channel produced better thermal performance than the ribbed convergent channel in three different restrictions; identical flow rate, identical pumping power, and identical pressure loss.

Shape Design of Heat Transfer Surfaces with Angled Ribs Using Numerical Optimization Techniques (경사진 사각리브가 부착된 열전달면의 수치최적화기법을 이용한 형상설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1051-1057
    • /
    • 2004
  • A numerical optimization procedure for the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer is presented. The response surface method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analyses of flow and heat transfer. SST turbulence model is used as a turbulence closure. Computational results for local heat transfer rate show reasonable agreements with experimental data. The pitch-to-height ratio of the rib and rib height-to-channel height ratio are set to be 9.0 and 0.1, respectively, and width-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. Full-factorial experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained in the range from 0.0 to 0.1 of weighting factor.

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

A Study on the Cooling Parameter Decision of Linear Motor System by Finite Volume Method (유한체적법을 이용한 리니어모터 시스템의 냉각조건 선정에 관한 연구)

  • Hwang Y.K.;Eun I.E.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.449-450
    • /
    • 2006
  • Development of a feed drive system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper presents an investigation into a thermal behavior of linear motor cooling plate. FVM employed to analyze the thermal behavior of the linear motor cooling plate, using the ANSYS-CFX.

  • PDF

A Simple Method to Make the Quadruple Tank System Near Linear

  • Lee, Jietae;Kyoung, Inhyun;Heo, Jea Pil;Park, YoungSu;Lim, Yugyeong;Kim, Dong Hyun;Lee, Yongjeh;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.767-770
    • /
    • 2017
  • Quadruple tank liquid level systems are popular in testing multivariable control systems for multivariable processes with positive or negative zeros. The liquid level system is nonlinear and it will help to illustrate the robustness of control systems. However, due to nonlinearity, it can be cumbersome to obtain process parameters for testing linear control systems. Perturbation sizes are limited for valid linearized process models, requiring level sensors with high precision. A simple method where the outlet orifice is replaced to a long tube is proposed here. The effluent flow rate becomes proportional to the liquid level due to the friction loss of long tube and the liquid level system shows near linear dynamics. It is applied to the quadruple tank system for easier experiments.

Design Optimization of Three-Dimensional Channel Roughened by Oblique Ribs Using Response Surface Method (반응면 기법을 이용한 경사진 리브가 부착된 삼차원 열전달유로의 최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.879-886
    • /
    • 2004
  • A numerical optimization has been carried out to determine the shape of the three-dimensional channel with oblique ribs attached on both walls to enhance turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Numerical results fur heat transfer rate show good agreements with experimental data. four dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, streamwise rib distance on opposite wall to rib pitch ratio, and the attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related coefficients with a weighting factor. D-optimal method is used to determine the training points as a means of design of experiment. Sensitivity of the objective parameters to each design variable has been analyzed. And, optimal values of the design variables have been obtained in a range of the weighting factor.

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

A Study on The Velocity Distribution in Closed Conduit by Using The Entropy Concept (엔트로피 개념을 이용한 관수로내의 유속분포에 관한 연구)

  • Choo, Tai Ho;Ok, Chi Youl;Kim, Jin Won;Maeng, Seung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.357-363
    • /
    • 2009
  • When yields the mean velocity of the closed conduit which is used generally, it is available to use Darcy Weisbach Friction Loss Head equation. But, it is inconvenient very because Friction Loss coefficient f is the function of Reynolds Number and Relative roughness (${\varepsilon}$/d). So, it is demanded more convenient equation to estimate. In order to prove the reliability and an accuracy of Chiu's velocity equation from the research which sees hereupon, proved agreement very well about measured velocity measurement data by using Laser velocimeter which is a non-insertion velocity measuring equipment from the closed conduit (Laser Doppler Velocimeter: LDV) and an insertion velocity measuring equipment and the Pitot tube which is a supersonic flow meter (Transit-Time Flowmeters). By proving theoretical linear-relation between maximum velocity and mean velocity in laboratory flume without increase and decrease of discharge, the equilibrium state of velocity in the closed conduit which reachs to equilibrium state corresponding to entropy parameter M value has a trend maintaining consistently this state. If entropy M value which is representing one section is determinated, mean velocity can be gotten only by measuring the velocity in the point appearing the maximum velocity. So, it has been proved to estimate simply discharge and it indicates that this method can be a theoretical way, which is the most important in the future, when designing, managing and operating the closed conduit.

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.427-434
    • /
    • 2009
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The numerical simulations for five different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermoaerodynamic performance for five different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, volume and area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 %, and the value of maximum ratio of Nusselt number augmentation is 7.05% when the riblet angle is $60^{\circ}$. The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum volume and area goodness factors are obtained when the riblet angle is $60^{\circ}$.

An Investigation of Changes in Bed Roughness of Selected Alluvial Rivers (충적하천(沖積河川)의 하상마찰(河床摩擦) 변화(變化)에 대한 조사(調査)·분석(分析))

  • Yu, Kwon Kyu;Kim, Hyoung Seop;Kim, Hoal Gon;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.111-121
    • /
    • 1993
  • Changes in bed forms and subsequent changes in channel roughness by changes in water discharge are discussed with the field data collected from some alluvial rivers in Korea. This study is limited to the following condition of river flow: (1) Medium size alluvial rivers with their widths of 100 m more or less, (2) Straight and prismatic river reach with no additional causes for energy loss but bed friction, (3) Lower-flow regime with Froude number less than 0.5. Major conclusions obtained from this study can be summarized as follows: (1) For the channels considered in this study, the bed roughness expressed by Manning's n increases from 0.02 for the plane beds with no sediment motion to 0.05 for the dune beds, (2) The roughness coefficient for alluvial channels should not be estimated from Strickler-type equations developed for the fixed beds, (3) The method for determining the channel roughness suggested in the present guideline for river works, River Structure Standard, appears to be lack of generality. More research based on the field data collected in Korea is needed in order to improve the existing methods.

  • PDF