• Title/Summary/Keyword: Flow force

Search Result 2,355, Processing Time 0.03 seconds

The Prediction of Hydrodynamic Forces Acting on Ship Hull in Laterally Berthing Maneuver Using CFD

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.253-258
    • /
    • 2003
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to grasp very clearly the magnitude and properties of the hydrodynamic forces acting on ship hull in shallow water. In this study, numerical calculation was made to investigate quantitatively the hydrodynamic force according to the water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. Comparing the computational results to the experimental ones, the validity of the CFD method was verified. The numerical solutions evaluated the hydrodynamic force with good accuracy, and then captured the features of the flow field around the ship in detail. The transitional lateral force in a state ranging from rest to uniform motion is modeled by using the concept of the circulation.

Damping Force Characteristics of ER Damper Considering Hysteresis (ER 댐퍼의 이력현상을 고려한 댐핑력 특성 고찰)

  • 홍성룡;송현정;한상수;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.489-494
    • /
    • 2002
  • This paper presents hydraulic model which can capture the hysteric damping force behavior of ER damper. A flow mode rue ER damper is manufactured, and its field-dependent damping forces are measured. Newly proposed hydraulic model which derived from physical hydro-mechanical parameters of ER damper are conventional Bingham model are investigated to represent the field-dependent damping force characteristics of ER damper. After principal parameters of two models are estimated from the measured damping forces data, the force vs velocity hysteresis cycles are then reconstructed. The results show that the proposed hydraulic model can capture the hysteresis behavior of ER damper accurately.

  • PDF

Modelling and Characteristic Analysis of a Servo Valve using Linear Force Motor (리니어 포스모터를 사용한 서보밸브의 모델링 및 특성해석)

  • Huh, J.Y.;Kim, C.J.;Park, C.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.1-6
    • /
    • 2010
  • Direct Drive Valves (DDV) with electric closed loop spool position control are suitable for electrohydraulic position, velocity, pressure or force control systems including those with high dynamic response requirements. The spool drive device is a permanent magnet linear force motor which can actively stroke the spool from its spring centered position in both directions. This basic study is carried out to drive the design parameters for developing a domestic DDV. The static and dynamic characteristics of DDV are examined. The simulation results are compared with data of manufacture's catalog to show the validity of the modelling.

  • PDF

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

A Study on the Turbulence Enhancement of Jet Flow by the Ultrasonic Forcing in a Coaxial Circular Pipe (동심원관내에서 초음파가진에 의한 제트유동의 난류증진에 관한 연구)

  • Ju, E.S.;Lee, Y.H.;Song, M.G.;Lee, S.B.;Son, S.W.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.31-37
    • /
    • 2001
  • A study to obtain the enhancement of turbulence at low Reynolds number is carried out by adding ultrasonic force into the jet flow field of a coaxial circular pipe which can afford the sufficient data of flow characteristics with the shear flow and turbulence flow in spite of its simple shape. A coaxial circular flow field is made vertically in a large and transparent acryl tank. The time mean velocity vector, distribution, kinetic energy and turbulence intensity formed in the complex flow field of turbulence enhancement are investigated, observed and discussed at Reynolds number of 2,000, 3,000 and 5,000 by using PIV measurement, in results, the validity of ultrasonic to obtain the enhancement of turbulence is certified.

  • PDF

3-D Dynamic Visualization by Stereoscopic PIV

  • LEE Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.15-23
    • /
    • 2004
  • The present study is aimed to achieve dynamic visualization from the in-house 3-D stereoscopic PIV to represent quantitative flow information such as time-resolved 3-D velocity distribution, vorticity, turbulent intensity or Reynolds stresses and so on. One of the application of the present study is Leading edge extension(LEX) flow appearing on modern delta wing aircraft. The other is mixing flow in stirring tank used in industry field. LEX in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present method resolves also the complicated flow patterns of two type impellers rotating in stirring vessel. Flow quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing visualization. And it makes the easy understanding of the unsteady flow characteristics of the typical industrial mixers.

  • PDF

Mechanism of Electrohydrodynamic Flow in AC Electrowetting (AC 전기습윤 중 전기수력학 유동의 메카니즘)

  • Lee, Ho-Rim;Ko, Sung-Hee;Yun, Sung-Chan;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2648-2651
    • /
    • 2008
  • In AC electrowetting, it has been reported that there is a flow inside droplets. The flow characteristics such as flow rate, direction and the pattern of streamline are altered according to the frequency range of applied voltage. However, the mechanism of the flow has not been explained yet. This work is concentrated on investigation of the flow mechanism when high-frequency voltage is applied to droplets. We propose that this phenomenon arises from the electro-thermal flow. A numerical analysis is performed for the needle-electrode-plane geometry in which the Coulombic force term is included in the Navier-Stokes equation. According to our analysis, electrical charge is generated due to conductivity gradient which is originated from the nonuniform Joule heating of fluid medium. The result of the analysis is compared with experimental result.

  • PDF

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

Two-Dimensional Slow Viscous Flow Due to a Stokeslet Near a Slit (Slit 近傍의 Stokeslet 에 의한 2次元의 느린 粘性流動)

  • 고형종;김문언
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.386-391
    • /
    • 1983
  • Two-dimensional slow viscous flow due to a stokeslet near a slit is investigated on the basis of Stokes approximation. Velocity fields and stream function are obtained in closed forms by finding two sectionally holomorphic functions which are determined by reducing the problem to Riemann-Hilbert problems. The force exerted on a small cylinder is calculated for the arbitrary position of the cylinder translating in an arbitrary direction. The features of fluid flow are also investigated.

A Numerical Study on the Flow around a Rudder using Blowing Effect (선박의 타 주위 유동 및 분사효과에 관한 수치적 연구)

  • Park Je-Jun;Lee Seung-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.185-190
    • /
    • 1998
  • A Numerical simulation on the flow around a Rudder with blowing is performed by Finite Volume Method. The governing equations are three dimensional incompressible Navier-Stokes equation and Continuity equation, Flow field around a finite Rudder including tip vortex is simulated and the change of the lift force by blowing is analyzed.

  • PDF