• 제목/요약/키워드: Flow fluctuations

검색결과 444건 처리시간 0.028초

임계노즐을 통한 비정상 기체유동의 초크현상에 관한 연구 (A Study on the Choke Phenomenon of Unsteady Gas Flow through a Critical Nozzle)

  • 김재형;김희동;박경암
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2127-2132
    • /
    • 2003
  • A computational study is performed to better understand the choke phenomenon of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Navier-Stokes equations are solved using a finite volume method. In order to simulate the effects of back pressure fluctuations on the critical nozzle flow, a forced sinusoidal pressure wave is assumed downstream the exit of the critical nozzle. It's frequency is 20kHz and amplitude is varied below 15% of time-mean back pressure. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thereby giving rise to applicable fluctuations of mass flow through the critical nozzle. The effect of the amplitude of the excited pressure fluctuations on the choke phenomenon is discussed in details.

  • PDF

Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method

  • Basit, Muhammad Abdul;Tian, Wenxi;Chen, Ronghua;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1886-1896
    • /
    • 2019
  • Modern small modular nuclear reactors can be built on a barge in ocean, therefore, their flow characteristics depend upon the ocean motions. In the present research, effect of rolling motion on flow and friction characteristics of laminar flow through vertical and horizontal narrow channels has been studied. A computer code has been developed using MPS method for two-dimensional Navier-Stokes equations with rolling motion force incorporated. Numerical results have been validated with the literature and have been found in good agreement. It has been found that the impact of rolling motions on flow characteristics weakens with increase in flow rate and fluid viscosity. For vertical narrow channels, the time averaged friction coefficient for vertical channels differed from steady friction coefficient. Furthermore, increasing the horizontal distance from rolling pivot enhanced the flow fluctuations but these stayed relatively unaffected by change in vertical distance of channel from the rolling axis. For horizontal narrow channels, the flow fluctuations were found to be sinusoidal in nature and their magnitude was found to be dependent mainly upon gravity fluctuations caused by rolling.

Unsteady wind loading on a wall

  • Baker, C.J.
    • Wind and Structures
    • /
    • 제4권5호
    • /
    • pp.413-440
    • /
    • 2001
  • This paper presents an extensive analysis of unsteady wind loading data on a 18 m long and 2 m high wall in a rural environment, with the wind at a range of angles to the wall normal. The data is firstly analyzed using standard statistical techniques (moments of probability distributions, auto- and cross-correlations, auto- and cross-spectra etc.). The analysis is taken further using a variety of less conventional methods - conditional sampling, proper orthogonal decomposition and wavelet analysis. It is shown that, even though the geometry is simple, the nature of the unsteady flow is surprisingly complex. The fluctuating pressures on the front face of the wall are to a great extent caused by the turbulent fluctuations in the upstream flow, and reflect the oncoming flow structures. The results further suggest that there are distinct structures in the oncoming flow with a variety of scales, and that the second order quasi-steady approach can predict the pressure fluctuations quite well. The fluctuating pressures on the rear face are also influenced by the fluctuations in the oncoming turbulence, but also by unsteady fluctuations due to wake unsteadiness. These fluctuations have a greater temporal and spatial coherence than on the front face and the quasi-steady method over-predicts the extent of these fluctuations. Finally the results are used to check some assumptions made in the current UK wind loading code of practice.

천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구 (Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition)

  • 홍진숙;전재진;김상윤;신구균
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.280-286
    • /
    • 2002
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boundary layer in the low noise wind tunnel. From this experiment we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and find the relations between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

축대칭 물체 선단에서 발생하는 경계층 내 벽면 변동 압력에 관한 연구 (Wall Pressure Fluctuations of the Boundary Layer Flow at the Nose of and Axisymmetric Body)

  • 신구균;홍진숙;김상윤;김상렬;박규철
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.602-609
    • /
    • 2000
  • When an axisymmetric body moves through air the boundary layer near the stagnation region remains laminar and subsequently it goes through transition to turbulent. The experimental investigation described in this paper concerns the characteristics of wall pressure fluctuations at the initial stage of boundary layer flow including transition. Flush-mounted microphones are used to measure the wall pressure fluctuations at the transition and turbulent boundary layer region of a blunt axisymmetric body in the low noise wind tunnel. It if found from this study that the wall pressure fluctuations in the transition region is higher than that in the turbulent region.

  • PDF

후향계단 주위의 난류 박리재부착유동에서의 벽압력변동의 통계적 특징 (Cross-Spectral Characteristics of Wall Pressure Fluctuations in Flows over a Backward-Facing Step)

  • 이인원;성형진
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.280-287
    • /
    • 2000
  • Laboratory measurements were made of wall pressure fluctuations in a separated and reattaching flow over a backward-facing step. An array of 32 microphones along the streamwise direction was utilized. Various statistical properties of pressure fluctuations were scrutinized. The main emphasis was placed on the flow inhomogeneity along the streamwise direction. One point statistics such as the streamwise distribution of rms pressure and autospectra were shown to be generally consistent with other studies. The coherences and wavenumber spectra in the streamwise directions were indicative of the presence of dual modes in pressure; one is the large-scale vortical structure in low frequency and the other is the boundary-layer-like decaying mode in high frequency.

개구부를 통한 외부압력 변동에 의한 난류환기 모델링 (Modeling of Turbulent Ventilation through an Opening due to Outdoor Pressure Fluctuations)

  • 한화택;염철민
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.121-127
    • /
    • 2008
  • This paper investigates the effects of outdoor pressure fluctuations on natural ventilation through an opening on a building envelope. The ventilation airflow rate depends on the magnitude and the period of the pressure fluctuations, the size of the opening relative to the space volume, and the resistance characteristics of the opening. Non-dimensional parameters have been derived, which determine indoor pressure responses due to outdoor pressure fluctuations. The flow regions are categorized into (1) synchronized region, (2) opening resistance region, and (3) transition region depending on the non-dimensional parameter derived. Pressure fluctuations and flow characteristics are investigated numerically using the 4th order Runge-Kutta method.

차압교란치의 통계적 특성에 의한 2상유동양식의 판별 (Identification of Two-Phase Flow Patterns Based on Statistical Characteristics of Differential Pressure Fluctuations)

  • 이상천;이정표;김중엽
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1290-1299
    • /
    • 1990
  • 본 연구에서는 이러한 개념을 확장하여 직경이 26nm와 38nm인 두 개의 수평관 내 기액 2상유동에서 오리피스의 차압교란치의 확률밀도함수, 자기상관함수와 파워 스 펙트럼 밀도함수를 구하여 유동양식에 따른 이 들 통계치의 특성을 구명하였다. 본 연구에서 다룬 유동양식은 기포, 플러그, 슬러그, 성층, 파상, 환상, pseudo-slug 유 동이다. 이 결과 차압교란치의 통계적 해석을 통한 유동양식 판별법이 매우 유용하 다는 사실을 밝혔으며, 또 본 판별법을 관내 압력강하치의 통계적 해석을 통하여 유동 양식을 구분한 타 연구자들의 방법과 비교 분석하였다.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Flow-Feedback for Pressure Fluctuation Mitigation and Pressure Recovery Improvement in a Conical Diffuser with Swirl

  • Tanasa, Constantin;Bosioc, Alin;Susan-Resiga, Romeo;Muntean, Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.47-56
    • /
    • 2011
  • Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce the flow-feedback approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. Experimental investigations on mitigating the pressure fluctuations generated by the precessing vortex rope and investigations of pressure recovery coefficient on the cone wall with and without flow-feedback method are presented.