Browse > Article
http://dx.doi.org/10.1016/j.net.2019.06.001

Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method  

Basit, Muhammad Abdul (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Tian, Wenxi (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Chen, Ronghua (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Qiu, Suizheng (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Su, Guanghui (School of Nuclear Science and Technology, Xi'an Jiaotong University)
Publication Information
Nuclear Engineering and Technology / v.51, no.8, 2019 , pp. 1886-1896 More about this Journal
Abstract
Modern small modular nuclear reactors can be built on a barge in ocean, therefore, their flow characteristics depend upon the ocean motions. In the present research, effect of rolling motion on flow and friction characteristics of laminar flow through vertical and horizontal narrow channels has been studied. A computer code has been developed using MPS method for two-dimensional Navier-Stokes equations with rolling motion force incorporated. Numerical results have been validated with the literature and have been found in good agreement. It has been found that the impact of rolling motions on flow characteristics weakens with increase in flow rate and fluid viscosity. For vertical narrow channels, the time averaged friction coefficient for vertical channels differed from steady friction coefficient. Furthermore, increasing the horizontal distance from rolling pivot enhanced the flow fluctuations but these stayed relatively unaffected by change in vertical distance of channel from the rolling axis. For horizontal narrow channels, the flow fluctuations were found to be sinusoidal in nature and their magnitude was found to be dependent mainly upon gravity fluctuations caused by rolling.
Keywords
Rolling motions; MPS method; Narrow channels; Flow fluctuations; Laminar flow; Friction coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.K. Saha, Microchannel Phase Change Transport Phenomena, Elsevier, 2016, https://doi.org/10.1016/C2014-0-04349-3.
2 X. Liu, K. Morita, S. Zhang, An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows, Comput. Methods Appl. Mech. Eng. 339 (2018) 467-487, https://doi.org/10.1016/j.cma.2018.05.005.   DOI
3 J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput. 31 (1977) 148, https://doi.org/10.2307/2005786.   DOI
4 E.V. Lewis, The motion of ships in waves, in: Princ. Nav. Archit., Society of Naval Architects and Marine Engineers, Newyork, 1967.
5 C. Yan, C. Yan, L. Sun, Q. Tian, Experimental and theoretical analysis of bubble rising velocity in a 3 ${\times}$ 3 rolling rod bundle under stagnant condition, Ann. Nucl. Energy 72 (72) 471-481, https://doi.org/10.1016/j.anucene.2014.06.028.   DOI
6 R.K. Shah, A.L. London, Laminar Flow Forced Convection in Ducts, Elsevier, 1978, https://doi.org/10.1016/C2013-0-06152-X.
7 B.H. Yan, Review of the nuclear reactor thermal hydraulic research in ocean motions, Nucl. Eng. Des. 313 (2017) 370-385, https://doi.org/10.1016/j.nucengdes.2016.12.041.   DOI
8 I. Ishida, T. Kusunoki, H. Murata, T. Yokomura, M. Kobayashi, H. Nariai, Thermal-hydraulic behavior of a marine reactor during oscillations, Nucl. Eng. Des. 120 (1990) 213-225, https://doi.org/10.1016/0029-5493(90)90374-7.   DOI
9 S. chao Tan, G.H. Su, P. zhen Gao, Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition, Appl. Therm. Eng. 29 (2009) 3160-3168, https://doi.org/10.1016/j.applthermaleng.2009.04.019.   DOI
10 R. Pendyala, S. Jayanti, A.R. Balakrishnan, Convective heat transfer in singlephase flow in a vertical tube subjected to axial low frequency oscillations, Heat Mass Transf. 44 (2008) 857-864, https://doi.org/10.1007/s00231-007-0302-3.   DOI
11 C. Wang, P. Gao, S. Wang, X. Li, C. Fang, Experimental study of single-phase forced circulation heat transfer in circular pipe under rolling motion, Nucl. Eng. Des. 265 (2013) 348-355, https://doi.org/10.1016/j.nucengdes.2013.08.066.   DOI
12 D. Xing, C. Yan, L. Sun, C. Xu, Effects of rolling on characteristics of singlephase water flow in narrow rectangular ducts, Nucl. Eng. Des. 247 (2012) 221-229, https://doi.org/10.1016/j.nucengdes.2012.03.010.   DOI
13 B.H. Yan, L. Yu, Y.H. Yang, Effects of ship motions on laminar flow in tubes, Ann. Nucl. Energy 37 (2010) 52-57, https://doi.org/10.1016/j.anucene.2009.09.013.   DOI
14 N. Zhuang, S. Tan, H. Yuan, C. Zhang, Flow resistance characteristics of pulsating laminar flow in rectangular channels, Ann. Nucl. Energy 73 (2014) 398-407, https://doi.org/10.1016/j.anucene.2014.06.057.   DOI
15 S. Tan, Z. Wang, C. Wang, S. Lan, Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions, Exp. Therm. Fluid Sci. 50 (2013) 69-78, https://doi.org/10.1016/j.expthermflusci.2013.05.006.   DOI
16 D. Xing, C. Yan, L. Sun, Flow fluctuation behaviors of single-phase forced circulation under rolling conditions, Ocean Eng. 82 (2014) 115-122, https://doi.org/10.1016/j.oceaneng.2014.03.006.   DOI
17 B.H. Yan, H.Y. Gu, L. Yu, Numerical research of turbulent heat transfer in rectangular channels in ocean environment, Heat Mass Transf. Und Stoffuebertragung. 47 (2011) 821-831, https://doi.org/10.1007/s00231-011-0770-3.   DOI
18 B.H. Yan, H.Y. Gu, L. Yu, Effects of rolling motion on the flow and heat transfer of turbulent pulsating flow in channels, Prog. Nucl. Energy 56 (2012) 24-36, https://doi.org/10.1016/j.pnucene.2011.12.017.   DOI
19 B.H. Yan, H.Y. Gu, Effect of rolling motion on the expansion and contraction loss coefficients, Ann. Nucl. Energy 53 (2013) 259-266, https://doi.org/10.1016/j.anucene.2012.09.019.   DOI
20 L. He, B. Wang, G. Xia, M. Peng, Study on natural circulation characteristics of an IPWR under inclined and rolling condition, Nucl. Eng. Des. 317 (2017) 81-89, https://doi.org/10.1016/j.nucengdes.2017.03.033.   DOI
21 Z. Yu, S. Lan, H. Yuan, S. Tan, Temperature fluctuation characteristics in a minirectangular channel under rolling motion, Prog. Nucl. Energy 81 (2015) 203-216, https://doi.org/10.1016/j.pnucene.2015.01.017.   DOI
22 G. Xia, B. Wang, X. Du, C. Wang, Neutronic/thermal-hydraulic coupling analysis of natural circulation IPWR under ocean conditions, Ann. Nucl. Energy 114 (2018) 92-101, https://doi.org/10.1016/j.anucene.2017.10.043.   DOI
23 S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng. 123 (1996) 421-434, https://doi.org/10.13182/NSE96-A24205.   DOI
24 K. Shibata, S. Koshizuka, K. Murotani, M. Sakai, I. Masaie, Boundary conditions for simulating karman vortices using the MPS method, J. Adv. Simul. Sci. Eng. 2 (2015) 235-254, https://doi.org/10.15748/jasse.2.235.
25 A. Shakibaeinia, Y.-C. Jin, A weakly compressible MPS method for modeling of open-boundary free-surface flow, Int. J. Numer. Methods Fluids (2009), https://doi.org/10.1002/fld.2132 n/a-n/a.
26 R. Chen, K. Guo, Y. Zhang, W. Tian, S. Qiu, G.H. Su, Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target, Nucl. Eng. Des. 330 (2018) 59-71, https://doi.org/10.1016/j.nucengdes.2018.01.019.   DOI
27 K. Guo, R. Chen, Y. Li, W. Tian, G. Su, S. Qiu, Numerical simulation of Rayleigh-Taylor Instability with periodic boundary condition using MPS method, Prog. Nucl. Energy 109 (2018) 130-144, https://doi.org/10.1016/j.pnucene.2018.08.008.   DOI
28 K. Guo, R. Chen, S. Qiu, W. Tian, G. Su, An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios, Nucl. Eng. Des. 340 (2018) 370-387, https://doi.org/10.1016/j.nucengdes.2018.10.006.   DOI