• Title/Summary/Keyword: Flow fluctuation

Search Result 610, Processing Time 0.026 seconds

Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan (축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong;Fukano, Tohru
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.

A Modeling Study of Local Equivalence Ratio Fluctuation in Imperfectly Premixed Turbulent Flames

  • Moon, Hee-Jang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1479-1489
    • /
    • 2004
  • The effect of fluctuation of Equivalence Ratio (ER) in a turbulent reactive field has been studied in order to check the global combustion characteristics induced by the local fluctuation. When the flow is premixed on a large scale, closer examination on a small scale reveals that local fluctuations of ER exist in an imperfectly premixed mixture, and that these fluctuations must be considered to correctly estimate the mean reaction rate. The fluctuation effect is analyzed with DNS by considering the joint PDF of reactive scalar and ER, followed by modeling study where an extension of stochastic mixing models accounting for the ER fluctuation is reviewed and tested. It was found that models prediction capability as well as its potential is in favor to this case accounting the local ER fluctuation. However, the effect of local fluctuation did not show any notable changes on the mean global characteristics of combustion when statistical independence between the reactive scalar and ER field is imposed, though it greatly influenced the joint PDF distribution. The importance of taking into account the statistical dependency between ER and combustible at the initial phase is demonstrated by testing the modeled reaction rate.

Instability of a Two-Phase Loop Thermosyphon

  • Rhi, Seok-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.1019-1028
    • /
    • 2002
  • The instability of two-phase loop thermosyphons was investigated experimentally and analytically. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7 mm (no insert) to 0.71 mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT. With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT The analysis based on the Kelvin-Helmholtz instability theory seems to predict reasonable well the loop stability state of the TLT with experimentally determined constant factors.

A Study of Flow Induced Noise for Multilayered Cylinder due to Turbulent Boundary Layer (난류경계층에 의한 다층재질 원통형 실린더의 유체소음 해석 연구)

  • 신구균;홍진숙;이헌곤
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.671-677
    • /
    • 1996
  • This paper presents the analytical method for predicting turbulence- induced noise in the multilayered cylinder composed of an outer hose, an inner fluid and an internal core. It is assumed that an infinite axisymmetric cylinder is located horizontally in water with free stream velocity and the turbulent boundary layer (TBL) surrounding the outer hose is fully developed and homogeneous. The transfer function at the core surface due to the propagation of the pressure fluctuation within the TBL is formulated using the linearized Navier-Stockes equation for solid and fluid. In the estimation of the energy spectrum of wall pressure fluctuation, the empirical formula proposed by Strawderman based on the Corcos model is used. A general algorithm for the calculation of the pressure level at the surface of a core, that is, turbulence- induced noise, is presented. Through the detailed numerical simulation, it is found that the major noise mechanism is the propagation of the bulge wave along hose.

  • PDF

A Study on the Subcooled Boiling Heat Transfer in a Horizontal Tube (수평관내 냉매의 과냉비등열전달에 관한 연구)

  • 김종헌;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 1994
  • A new reliable method to prediet the axial vapor fraction distribution from the measured probability density of the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled boiling flow is easily calculated from the liquid bulk temperature. When the heat generating rate is reached to the CHF value, the sharp wall temperature increasing by the wall temperature fluctuation is occurred under the CHF condition. This paper presents the simple wall temperature fluctuation model of transition boiling by the repeating process of overheating and quenching, when the coalescent bubble passes slowly near the wall. Experiments for the subcooled R-113 flow are carride-out in the range of(0.9399~4.461)${\times}10^6$kg/$m^2$hr mass velocity and 10~3$0^{\circ}C$ intel subcooling condition.

  • PDF

Experimental Study on Instability of Two-Phase Loop Thermosyphon (루프형 2상 유동 열사이폰의 유동 불안정에 관한 실험적 연구)

  • 이석호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.408-414
    • /
    • 2002
  • The instability of two-phase loop thermosyphons (TLTs) was investigated experimentally. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7mm (no insert) to 0.71mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT.

Flow Characteristics of a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1383-1388
    • /
    • 2004
  • The flow characteristics in the blade passage of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From the relative velocity distributions near the rotor tip, large axial velocity decay is observed at near stall condition, which results in large blockage compared to that at the design condition. Througout the flow measurements using a quasi-orthogonal measuring points to the tip leakage vortex, it is noted that the radial position of the tip leakage vortex is distributed between 94 and 96 percent span for all flow conditions. High spectrum density due to the large fluctuation of the tip leakage vortex is observed near the blade suction surface below the frequency of 1000 Hz at near stall condition.

  • PDF

Dynamic Characteristics of the Radial Clearance Flow between Axially Oscillating Rotational Disk and Stationary Disk

  • Horiguchi, Hironori;Ueno, Yoshinori;Takahashi, Koutaro;Miyagawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Dynamic characteristics of the clearance flow between an axially oscillating rotational disk and a stationary disk were examined by experiments and computations based on a bulk flow model. In the case without pressure fluctuations at the inlet and outlet of the clearance, parallel and contracting flow paths had an effect to stabilize the axial oscillation of the rotating disk. The enlarged flow path had an effect to destabilize the axial oscillation due to the negative damping and stiffness for outward and inward flows, respectively. It was shown that the fluid force can be decomposed into the component caused by the inlet or outlet pressure fluctuation without the axial oscillation and that due to the axial oscillation without the inlet or outlet pressure fluctuation. A method to predict the stiffness and damping coefficients is proposed for general cases when the device is combined with an arbitrary flow system.

The Study for Enhancing Resilience to Debris Flow at the Vulnerable Areas (토석류 재해발생 시 레질리언스 강화를 위한 연구)

  • Kim, Sungduk;Lee, Hojin;Chang, Hyungjoon;Dho, Hyonseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.8
    • /
    • pp.5-12
    • /
    • 2021
  • Climate change caused by global warming increases the frequency of occurrence of super typhoons and causes various types of sediment disasters such as debris flows in the mountainous area. This study is to evaluate the behavior of debris flow according to the multiplier value of the precipitation characteristics and the quantity of debris flow according to the typhoon category. For the analysis of the debris flow, the finite difference method for time elapse was applied. The larger the typhoon category, the higher the peak value of the flow discharge of debris flow and the faster the arrival time. When the precipitation characteristic multiplier is large, the fluctuation amplitude is high and the bandwidth is wide. When the slope angle was steeper, water discharge increased by 2~2.5 times or more, and the fluctuation of the flow discharge of debris flow increased. All of the velocities of debris flow were included to the class of "Very rapid", and the distribution of the erosion or sedimentation velocity of debris flows showed that the magnitude of erosion increased from the beginning, large-scale erosion occurred, and flowed downstream. The results of this study will provide information for predicting debris flow disasters, structural countermeasures and establishing countermeasures for reinforcing resilience in vulnerable areas.

Numerical Investigation of Pressure Fluctuation Reducing in Draft Tube of Francis Turbines

  • Li, WF;Feng, JJ;Wu, H;Lu, JL;Liao, WL;Luo, XQ
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2015
  • For a prototype turbine operating under part load conditions, the turbine output is fluctuating strongly, leading to the power station incapable of connecting to the grid. The field test of the prototype turbine shows that the main reason is the resonance between the draft tube vortex frequency and the generator natural vibration frequency. In order to reduce the fluctuation of power output, different measures including the air admission, water admission and adding flow deflectors in the draft tube are put forward. CFD method is adopted to simulate the three-dimensional unsteady flow in the Francis turbine, to calculate pressure fluctuations in draft tube under three schemes and to compare with the field test result of the prototype turbine. Calculation results show that all the three measures can reduce the pressure pulsation amplitude in the draft tube. The method of water supply and adding flow deflector both can effectively change the frequency and avoid resonance, thus solving the output fluctuation problem. However, the method of air admission could not change the pressure fluctuation frequency.