• 제목/요약/키워드: Flow electrolysis

검색결과 53건 처리시간 0.024초

붕소가 도핑된 다이아몬드전극을 이용한 오존발생기의 전기화학적 특성 (Eletrochemical Characteristics of Ozone Generator using Boron-doped Diamond Electrode)

  • 오원균;김규식;;;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.585-588
    • /
    • 2001
  • Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped conducting diamond films were used as anode for generating ozone gas by electrolysis of acidic solution. In this work, we have studied ozone generating system using Boron-doped Diamond electrode. Electrochemical cell and ozone generating system were designed for decreasing the temperature of the system, which was elevated during the reaction. by circulation of electrolyte in the system. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable while PbO$_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

PEM 수전해를 이용한 P2G에 대한 경제적 타당성 분석 (Economic Feasibility Analysis for P2G Using PEM Water Electrolysis)

  • 정선주;최낙헌;문창환;문상봉;임한권
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.231-237
    • /
    • 2017
  • With worldwide efforts to increase the portion of renewable energy for $CO_2$ reductions, a lot of attention has been paid to P2G (power-to-gas) in Europe and Japan to efficiently utilize the surplus electricity. In this paper, economic feasibility analysis has been carried out for P2G using PEM water electrolysis by reflecting current economic status in Korea. In addition, efficiency and electricity price required to be competent in Korean market were provided. Based on cash flow diagrams, unit production costs for $H_2$ and $CH_4$ were estimated and profitability of P2G using PEM water electrolysis was analyzed.

E. coli 불활성화를 위한 단일 소독 공정의 비교 (A Comparison of Single Disinfection Process for Inactivation of E. coli)

  • 김동석;송승구;박영식
    • KSBB Journal
    • /
    • 제25권1호
    • /
    • pp.25-32
    • /
    • 2010
  • This study was carried out to evaluate the performance of three kinds of single process (electrolysis, UV and ultrasonic process) for the purpose of disinfection of Escherichia coli in water. Among the five kinds of electrode material, disinfection performance of Ir electrode was higher than that of the other electrodes. The order of disinfection performance for E. coli in single process lies in: electrolysis > UV $\gg$ ultrasonic process. Performance of the three single processes was increased with the increase of the electric power. Disinfection efficiency of the three processes was increased with the decrease of the pH. Disinfection of the UV process were decreased by the increase of NaCl dosage and air flow rate. However, ultrasonic process was not affected above two parameters. OH radical was not produced in UV and ultrasonic process. E. coli disinfection of the electrolysis process was well agreed with RNO degradation tendency, except pH.

해수 전기분해를 적용한 배연 탈질 기술에 관한 연구 (A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis)

  • 김태우;김종화;송주영
    • 한국응용과학기술학회지
    • /
    • 제29권4호
    • /
    • pp.570-576
    • /
    • 2012
  • 본 연구에서는 무격막식 전기분해 처리된 해수를 산화제로하는 NO 산화반응의 특성에 대해 실험적으로 살펴보았다. 폐순환 정전류 전기분해 시스템을 통해전해 시간이 길어질수록 전해수의 유효 염소농도와 온도, 염소산 이온의 비율이 증가함을 확인하였다. 전해수가 채워진 버블링 반응기에서 전해수의 유효염소농도와 온도에 비례하여 $NO_2$로 산화되는 NO의 양이 증가하였다. 또한 산화되어 생성된 $NO_2$는 전해수에 용해되어 $HNO_3{^-}$ 이온으로 존재함을 확인하였다.

Ru-흑연 전극을 이용한 Rhodamine B의 색 제거 (Decolorization of a Rhodamine B Using Ru-graphite Electrode)

  • 박영식
    • 한국환경과학회지
    • /
    • 제17권5호
    • /
    • pp.547-553
    • /
    • 2008
  • For the RhB removal from the wastewater, electrochemical method was adapted to this study. Three dimensionally stable anode (Pt, Ir and Ru) and graphite and Ru cathode were used. In order to identify decolorization, the effects of electrode, current density, electrolyte and air flow rate were investigated. The effects of electrode material, current, electrolyte concentration and air flow rate were investigated on the decolorization of RhB. Electro-Fenton's reaction was evaluated by added $Fe^{2+}$ and $H_2O_2$ generated by the graphite cathode. Performance for RhB decolorization of the four electrode systems lay in: Ru-graphite > Ru-Ru > Ir-graphite > Pt-graphite. A complete color removal was obtained for RhB (30 mg/L) at the end of 30 min of electrolysis under optimum operations of 2 g/L NaCl concentration and 2 A current. $Fe^{2+}$ addition increased initial reaction and decreased final RhB concentration. However the effect was not high.

수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구 (A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics)

  • 김광욱;이일희;신영준;유재형;박현수
    • 공업화학
    • /
    • 제7권2호
    • /
    • pp.228-236
    • /
    • 1996
  • 본 연구에서는 고밀집 섬유다발체 내에 수은과 금속이온을 함유한 수용액을 동시에 주입시켜 최소 공간에서 최대한의 수은전극 면적을 갖는 수직형 순환식 수은 모세관 다발체 전극 전해반응 장치가 개발되었다. 이 장치의 특성과 안정성을 평가하기 위해 수은과 수용액의 유량 변화에 따른 철(III)과 우라늄(VI)이온의 환원 voltammogram이 측정되었다. 수용액의 유속은 장치 내 전해반응에 큰 영향을 미쳤으며, 잘 발달된 한계전류를 얻기 위해서는 정밀한 유속조절이 필요하였다. 측정된 voltammogram의 한계전류는 수용액 유속에 선형적으로 비례하였으며, 한계전류를 보이는 전위에서 연속적으로 우라늄(VI)과 철(III) 이온을 100% 환원시킬 수 있었다. 고밀집 섬유집합체 내에서 수은이 모세관 연속체를 유지하는데 필요로 하는 수은유속 이상에서는 수은유속의 변화는 장치 내의 전해반응에 큰 영향을 미치지 않았다. 본 연구에서 개발된 수직형 순환식 수은 모세관 다발체 전극 전해계는 정확히 제어되는 수용액 유량조건에서 수용액 내의 금속이온의 산화수 상태 및 농도의 연속적인 분석 및 전해반응 기구 해석에 효과적으로 사용될 수 있음을 알 수 있었다.

  • PDF

반구형 부스바를 이용한 전해연마액 수명연장을 위한 공정 최적화 (Process Optimization for Life Extension of Electropolishing Solution using Half Round Bus Bar)

  • 김수한;이승헌;조재훈;임동하;최중소;박철환
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.447-453
    • /
    • 2016
  • In this study, we intended to extend the life of electropolishing solution through the reduction of electric resistance by improving the electrolysis efficiency. The optimum conditions were obtained by half round bus bar and Taguchi method. As the main control factors in the electropolishing process, current density, polishing time, electrolyte temperature and flow rate were selected. The electrolyte temperature was the most significant to the electrolysis efficiency. The optimum conditions for the life extension of electropolishing solution were as follows: current density, $45A/dm^2$; polishing time, 6 min; electrolyte temperature, $70^{\circ}C$; flow rate, 11 L/min. As a results of ANOVA of SN ratios, it was found that the electrolyte temperature was significant factor at the 90% confidence level.

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

항균성을 부여하기 위한 세탁과정에서의 은콜로이드 용액 처리 (Colloidal Silver Treatment of Cotton Fabrics after Washing to Impart Antimicorbial Activity)

  • 정혜원;김현숙
    • 한국의류학회지
    • /
    • 제28권9_10호
    • /
    • pp.1312-1319
    • /
    • 2004
  • Underwear is laundered frequently and most of them is made of cotton, but a cotton fiber is more difficult to modify than a synthetic fiber. We have attempted to determine the optimum conditions necessary whereby the lowest concentration of silver solution is needed to produce the greatest antimicrobial properties of cotton fabrics. For this study, colloidal silver was made by electrolysis. The concentration of colloidal silver was increased by increasing the area of the silver plates submerged in the water, the water temperature, the water hardness and the flow time of the water per 1l. However, the colloidal silver concentration was decreased by extending a space between the silver plates and increasing the water velocity. Cotton fabrics treated in the washing machine with 1.3 ppm colloidal silver solution for 10 minutes had effective microbial properties and an unperceivable reduction of reflectance.

붕소가 도핑된 다이아몬드 전극을 이용한 오존 발생의 효과 및 응용 (Ozone Generation Effect and application using Boron-doped Diamond Electrode)

  • 피영민;;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.170-172
    • /
    • 2002
  • Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond(BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work, we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF