• 제목/요약/키워드: Flow distribution ratio

검색결과 654건 처리시간 0.026초

지중 및 보조루프의 2차 유체 유량 분배비를 통한 하이브리드 지열히트펌프의 성능 최적화 연구 (Performance Optimization of a Hybrid Ground Source Heat Pump According to Secondary Flow Distribution Ratio between the Ground and the Supplemental Loop)

  • 이주성;박홍희;김원욱;김용찬
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.102-110
    • /
    • 2012
  • The objective of this study is to improve the performance of a hybrid ground source heat pump (HGSHP) by optimizing the flow distribution ratio of secondary fluid flow rate between a ground loop and a supplemental loop. Initially, a conventional ground source heat pump (GSHP) was tested to determine an optimum flow rate of the secondary fluid. Based on the selected optimum value, the HGSHP was also tested by varying the flow distribution ratio of the secondary fluid flow rate between the ground loop and the supplemental loop, such as 9:1, 7:3, 5:5, and 3:7. The results showed that the optimum flow distribution ratio of the secondary fluid flow rate was 7:3. The COP of the HGSHP was improved by 19% over the GSHP at a flow distribution ratio of 7:3 and an entering water temperature of $40^{\circ}C$.

T형 수평 및 수직 입구 분지관 내 냉매 2상 유동 특성 (Two-phase Flow Characteristics of Refrigerant in T-branch with Horizontal and Vertical Inlet Tube)

  • 태상진;조금남
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.741-748
    • /
    • 2002
  • The present study investigated the two-phase flow characteristics of refrigerant R-22 in T-branch with horizontal and vertical inlet tube The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), inlet mass flux (200~500 kg/$m^2$s) and inlet quality (0.1~0.4). Predicted pressure profile agreed with the measured data within 25.4%. The flow distribution ratio decreased as the mass flux increased. The flow distribution ratio decreased by 12~25% as the tube diameter ratio decreased from 1 to 0.61, and decreased by 38~47% as the orientation of branch changed from horizontal to vertical upward for horizontal inlet tubes. As the orientation of inlet tube changed from horizontal to vertical upward for horizontal branch, the flow distribution ratio increased by 15~68%, but the quality in the branch tube decreased by 28~92% due to phase separation.

유입수 분배비와 체류시간이 ASA 공정의 가정오수 처리효율에 미치는 영향 (Effects of Influent Flow Distribution Ratio and HRT on Sewage Treatment Efficiency of the ASA Process)

  • 양은경;성일화
    • 환경위생공학
    • /
    • 제24권1호
    • /
    • pp.13-24
    • /
    • 2009
  • ASA공정은 유입수를 혐기조와 무산소조에 분배하여 유입시킴으로써 반송슬러지에 영양 물질을 공급하여 슬러지의 안정화 및 인 방출을 유도하고, 후속 호기조에서 유기물 제거, 인 과잉섭취 및 질산화를 조장하며, 무산소조에서는 내부반송을 하지 않고 폐수의 탄소원을 이용하여 탈질함으로써 내생탈질을 증가시키는 공법이다. 본 연구에서는 가정오수에 ASA공정을 적용하여 유입수의 분배비와 체류시간이 처리효율에 미치는 영향을 파악하였다. 유입수 분배비와 HRT는 BOD 제거에 큰 영향을 미치지 않았고 BOD 제거율은 운전기간 동안 92.0% 이상 안정적으로 유지되었다. 유입수 분배비가 4:6일 때에는 질소제거율이 82.6%, 9:1일 때에는 인제거율이 67.8%로서 가장 높게 나타났다. ASA공정에 의한 가정오수처리에서 유입수의 분배비는 6:4, HRT는 8hr일 때 제거율이 가장 양호하였으며, 이때 질소, 인제거율은 각각 82.6%와 59.5%이었다.

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.

로타리 킬른의 장입 특성이 온도분포에 미치는 영향 (The Effect of Feeding Characteristics on the Temperature Distribution of Rotary Kiln)

  • 박종석;전철균
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.24-32
    • /
    • 2007
  • A theoretical model was developed for rotary kiln and computational study was conducted to find the effect of feeding characteristics. One dimensional model with the variations of heating distribution, length of heating zone, excess air ratio and revolution was considered. The comparison of parallel-flow rotary kiln with that of counter-flow was conducted. For parallel-flow type, it is found that the variation of temperature of solid is not great for the zone that is following flame-heating zone. This zone is good to take the special treatment because thermal deviation is small and contacting time is enough for another treatment. Increase of excess air ratio have the effect of decreasing solid temperature. But this effect of decreasing solid temperature goes small for the great excess air ratio. The heating is efficient for the flame which has the maximum heating at the central region of the full length.

  • PDF

수평 T형 분지관 내 냉매 이상유동 분배특성에 미치는 변수들의 영향 (Effect of Parameters on the Two-Phase Flow Distribution Characteristics of Refrigerants in a Horizontal T-Junction)

  • 태상진;조금남
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2006
  • The present study has been experimentally investigated the effect of geometric and operating parameters on the two-phase flow distribution of refrigerants in a horizontal T-junction. The operating parameters were the kind of refrigerants (R-22, R- l34a, and R-410A), saturated temperature, and the inlet mass flux and quality. The geometric parameters were the tube diameter and the tube diameter ratio. The measured data of refrigerants were compared with the values predicted using the models developed by several researchers for air/water or steani/water two-phase flow. Among the operating parameters, the inlet Quality was the most sensitive to the mass flow rate ratio. Between the geometric parameters, the tube diameter ratio was more sensitive than tube diameter.

EFFECT OF ASPECT RATIO ON SLIP FLOW IN RECTANGULAR MICROCHANNELS

  • Islam, Md.Tajul;Lee, Yeon-Won
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2803-2810
    • /
    • 2007
  • Three dimensional numerical studies were carried out to investigate the effect of aspect ratio on gas slip flow in rectangular microchannels. We focused on aspect ratio effect on slip velocity, pressure distribution and mass flow rate. As aspect ratio decreases the wall slip velocity also decreases. As a result nonlinearity of pressure distribution increases. The slip velocities on sides and top/bottom walls are different and this difference decreases with increasing aspect ratio. These two velocities are equal when aspect ratio is 1. The ratios of slip mass flow rate over noslip mass flow rate increases with increasing aspect ratios.

  • PDF

대향류 매니폴드 입-출구 면적비에 따른 열교환기의 성능특성에 관한 수치적 연구 (Numerical Investigation of the Performance of a Heat Exchanger for the Inlet-outlet Area Ratio of Counter Flow Manifold)

  • 김상조;최병익;김귀순;손창민;하만영;정지환;고정상
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.269-273
    • /
    • 2011
  • 본 논문에서는 대향류 매니폴드의 면적비에 따른 튜브형 열교환기에서의 압력강하와 유량 균일도를 분석하기위해 전산해석을 수행하였다. 유동 분배와 압력손실 특성은 입-출구 면적비에 따라 영향을 받는다. 본 연구에서, 최적의 입-출구 면적비를 선택함으로서 튜브형 열교환기의 유동 불균일도 최소와 향상된 압력손실 특성을 얻을 수 있었다.

  • PDF

흡기포트 형상에 따른 선회비 분포특성에 관한 실험적 연구 (An experimental study on the characteristics of the swirl ratio distribution with an intake port geometry)

  • 이지근;주봉철;노병준;강신재
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.725-734
    • /
    • 1997
  • The effect of helical intake port geometry on in-cylinder swirl flow characteristics was studied. Two helical intake ports were selected to change swirl ratio, mean flow coefficient with the variation of valve lifts, valve eccentricity ratios and axial distance. The measurements were made by using an impulse swirl meter. The port B modified to increase the swirl ratio( $R_{s}$) had the tendency of the increased non-dimensional rig swirl ( $N_{r}$) distribution in comparison with that of the port A. And the $N_{r}$ distribution was remarkably improved at low valve lifts. The modification of the geometry to increase the swirl ratio ( $R_{s}$) in helical intake port resulted in the decrease of the mean flow coefficient ( $C_{f(mean)}$) regardless of valve eccentricity ratio ( $N_{y}$). And also non-dimensional rig swirl ( $N_{r}$) in the high valve lift affected the calculation of swirl ratio considerably.onsiderably.

대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구 (An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube)

  • 황승식
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.