• Title/Summary/Keyword: Flow diagnostics

Search Result 101, Processing Time 0.02 seconds

Comparison of Cerebral Blood Flow between Patients with Metabolic Syndrome and Normal Group to Evaluate Diagnostic Value of Transcranial Doppler Ultrasound (대사증후군 환자군과 정상군의 뇌혈류 측정 비교를 통한 뇌졸중 위험인자에 대한 TCD의 진단적 가치 고찰)

  • Um, Eun-Jin;Park, Woo-Rham;Kim, Ju-Sung;Lee, Beom-Joon;Na, Byung-Jo
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.14 no.2
    • /
    • pp.85-100
    • /
    • 2010
  • Objectives: The purpose of this study was to evaluate diagnostic value of Transcranial Doppler Ultrasound about risk factor of stroke by comparing blood flow between patients with metabolic syndrome(MS group) and Normal group. Methods: 62 metabolic syndrome patients and 106 healthy adults were selected who had no cerebrovascular diseases, cardiovascular diseases and other systemic diseases. We measured the mean velocity(Vm), peak systolic velocity(Vs) and pulsatility index(PI) of MCA, ACA, PCA, VA, ICA in two groups using TCD. All subjects were divided by gender and age. Results: In comparing Ms group with normal group, Vm in the MCA, ACA, PCA, ICA and Vs in the MCA, ICA were lower in MS group. In all vessels, PI of MS group were higher than that of Normal group. In all vessels, Vm and Vs revealed negative correlation with age and PI revealed positive correlation with age. In 20-39 year olds, there was decrease in the Vs and Vm and increase of PI of MS group in comparison with normal group. There was significant difference in the Vm of PCA, ICA, Vs of MCA, PCA, ICA and PI of MCA, ACA. In 40-59 year olds, Vm in the MCA, ACA, ICA and Vs in the MCA, ACA were lower in MS group. PI in the MCA, ACA, PCA, ICA were higher in MS group. In 60-79 year olds, Vm of MCA, PCA, ICA was decreased in MS group than Normal group with no statistical signification. Vs in the MCA was lower and PI in the PCA was higher in MS group. In male, Vm of PCA and Vs of MCA were lower and PI of MCA, ACA, PCA, ICA were higher in MS group. In female, Vm of MCA, PCA, ICA and Vs of MCA, ICA were lower and PI of ACA, PCA, VA, ICA were higher in MS group. Conclusions: The significant difference in Vm, Vs, PI between MS group and normal group suggests hemodynamic disorder. Screening and prognosing high risk group can be done through TCD and this can be used to prevent stroke. More detailed study will be needed.

A Study on Quantitative Visualization and Measurement of Physical Properties of Radial Symmetric Fluids Using Electronic Speckle Pattern Interferometry (전자 스체클 패턴 간섭법을 이용한 반경방향 대칭 유체의 정량적 가시화 및 물성치 측정에 관한 연구)

  • Gang, Yeong-Jun;Chae, Hui-Chang;Kim, Gyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.217-224
    • /
    • 2002
  • It is very important to measure and visualize the changes in the physical properties of fluid flow because this is the foundation of measurement techniques used in aerodynamics, heat transfer, plasma diagnostics, and stress analysis of transparent models. The optical methods are advantageous over probe-based techniques in the optical methods are of high speed, non-contact and are capable of providing full-field results with high spatial resolution. Therefore we propose the electronic speckle pattern interferometry(ESPI) that gives us a solution to overcome those limitations. In this paper the experimental results show qualitative and quantitative visualization of changes in the physical properties of the candle and alcohol lamp with 3D plotting. And we obtained the refractive index, mass density and temperature distribution of fluids. The results clearly show the process of flow phenomena and give the feasibility of quantitative interpretation of gasdynamics.

Experimental Study on Fuel/Air Mixing using the Cavity in the Supersonic Flow (초음속 유동장 내의 공동을 이용한 연료/공기 혼합에 관한 실험적 연구)

  • Kim Chae-Hyoung;Jeong Eun-Ju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.64-71
    • /
    • 2005
  • To achieve efficient supersonic combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between fuel and airstream. In former days, various injection concepts have been investigated. Cavity flow is the open type, that is, length-to-depth ratio L/D=4.8, aft ramp angle is $22.5^{\circ}$. An experimental study on a transverse cross jet injection into a Mach 1.92 supersonic main stream which flows over a cavity was carried out to investigate the effect of the momentum flux ratio(J), the jet interaction characteristics, and the pressure distribution in the combustor and using the primary diagnostics : schlieren visualization and wall static pressure measurements. Fuel penetration height and jet interaction characteristics depend strongly on the momentum flux ratio.

  • PDF

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

The Effect of N2 Dilution on the Flame Stabilization in a Non-Premixed Turbulent H2 Jet with Coaxial Air (질소 희석이 수소 난류확산화염의 화염안정성에 미치는 영향)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.477-485
    • /
    • 2009
  • The study of nitrogen dilution effect on the flame stability was experimentally investigated in a non-premixed turbulent lifted hydrogen jet with coaxial air. Hydrogen gas was used as a fuel and coaxial air was used to make flame liftoff. Each of hydrogen and air were injected through axisymetric inner and outer nozzles ($d_F=3.65\;mm$ and $d_A=14.1\;mm$). And both fuel jet and coaxial air velocity were fixed as $u_F=200\;m/s$ and $u_A=16\;m/s$, while the mole fraction of nitrogen diluents gas was varied from 0.0 to 0.2 with 0.1 step. For the analysis of flame structure and the flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF laser diagnostics had been performed. The stabilization point was selected in the most upstream region of the flame base and defined as the point where the turbulent flame propagation velocity was equal to the axial component of local flow velocity. We found that the turbulent flame propagation velocity increased with the decrease of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity and axial strain rate, even though nitrogen diluents mole fraction was changed.

New uroflowmetry technique measuring hydraulic pressure for prostate diagnostics (전립선 진단을 위한 수압 측정 방식의 새로운 요 유량 계측기법)

  • Kim, Kyung-Ah;Choi, Sung-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • Uroflowmetry is non-invasive and easily performed to diagnose benign prostate hypertrophy (BPH) frequent in aged men. Weight change during urination is usually measured to estimate the urinary flow rate by a load cell, but sensitive to any impacts against the bottom of the container, leading to unnecessary noise generation. Moreover, load cells are relatively expensive raising the production cost. The present study proposed a new technique, measuring hydraulic pressure on the bottom of the urine container to evaluate the urinary flow rate. Low cost pressure transducer enabled almost perfectly linear relationship between the urine volume and the hydraulic pressure. During both the simulated and human urination experiment, variance of the pressure signal was more than 50 % smaller than the weight signal acquired by a load cell, which demonstrated that the impact noise was decreased to a great degree by pressure compared to weight measurement.

Trend Monitoring of A Turbofan Engine for Long Endurance UAV Using Fuzzy Logic

  • Kong, Chang-Duk;Ki, Ja-Young;Oh, Seong-Hwan;Kim, Ji-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.64-70
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results. it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

A Study on Trend Monitoring of a Long Endurance UAV s Gas Turbine to be Operated at Medium High Altitude

  • Kho, Seong-Hee;Ki, Ja-Young;Kong, Chang-Duk;Oh, Seong-Hwan;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.84-88
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results, it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

  • PDF

Inertial Microfluidics-Based Cell Sorting

  • Kim, Ga-Yeong;Han, Jong-In;Park, Je-Kyun
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.257-267
    • /
    • 2018
  • Inertial microfluidics has attracted significant attention in recent years due to its superior benefits of high throughput, precise control, simplicity, and low cost. Many inertial microfluidic applications have been demonstrated for physiological sample processing, clinical diagnostics, and environmental monitoring and cleanup. In this review, we discuss the fundamental mechanisms and principles of inertial migration and Dean flow, which are the basis of inertial microfluidics, and provide basic scaling laws for designing the inertial microfluidic devices. This will allow end-users with diverse backgrounds to more easily take advantage of the inertial microfluidic technologies in a wide range of applications. A variety of recent applications are also classified according to the structure of the microchannel: straight channels and curved channels. Finally, several future perspectives of employing fluid inertia in microfluidic-based cell sorting are discussed. Inertial microfluidics is still expected to be promising in the near future with more novel designs using various shapes of cross section, sheath flows with different viscosities, or technologies that target micron and submicron bioparticles.

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho;Lee Seoung-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.213-217
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). For teaming the NN, a BPN with one hidden, one input and one output layer was used. The input layer had seven neurons of variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer used 6 neurons of degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network teaming and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF