• Title/Summary/Keyword: Flow deviation

Search Result 548, Processing Time 0.024 seconds

A Study on the Impacts of Changes in Road Traffic Conditions and Speed Limits on Traffic Flow and Safety (도로교통 여건과 제한속도 변화에 따른 교통소통과 안전에 관한 영향 분석 연구)

  • Nam sik Moon;Eon kyo Shin;Ju hyun Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.32-49
    • /
    • 2024
  • In this paper, we analyzed the impacts of road traffic conditions and speed limit changes on traffic flow and safety. Travel speed and moving speed were set as traffic flow indicators and'moving speed-travel speed',speed deviation, large speed deviation ratio, and number of conflicts were set as safety indicators, and the impacts of changes in road traffic conditions and speed limits on these were analyzed. According to the analysis results, the speed limit had a significant impacts on the traffic indicators, but did not significantly affect the safety indicators. As a result of the statistical validity test, it was proven that the traffic flow index increases as the speed limit increases. However, although safety indicators often increase, their validity has not been proven statistically. Therefore, if the speed limit is set and operated by properly considering the traffic flow status according to various road conditions and changes in traffic volume, it can be said to match the speed at which drivers drive and improve traffic flow and safety. Therefore, it is expected that calculating the speed limit considering the traffic flow indicators and safety indicators presented in this paper and operating the speed limit according to changes in traffic volume will contribute to stabilizing the traffic flow on the road.

An Experimental Study on Injection Molding of Etched Surface Pattern (식각 표면패턴의 사출성형에 관한 실험적 연구)

  • 황금종;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.583-586
    • /
    • 2002
  • Molding properties of etched surface pattern are presented. Specimens, whose surface patterns are made by print-type etching, are investigated. The molding properties of surface pattern are estimated with roughness deviation of surface pattern on part and mold. The etching properties are related to physical properties of plastic materials and surface roughness of etched pattern. Also, flow mark and gate location can give influence on surface pattern molding. The experimental result can contribute to good molding of surface pattern in injection molding.

  • PDF

An Experimental Study on Injection Molding of Etched Surface Pattern (식각 표면패턴의 사출성형에 관한 실험적 연구)

  • Jing Chung Huang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.25-32
    • /
    • 2003
  • Molding properties of etched surface pattern are presented. Injection molding has given attention on improving dimensional accuracy and productivity. However, the molding of etched surface pattern on plastic parts is not researched relatively for its additional values, which can meet design function and customer's attraction. Specimens, whose surface patterns are made by print-type etching, are investigated. The molding properties of surface pattern are estimated with roughness deviation of surface pattern on part and mold. The etching properties are related to physical properties of plastic materials and surface roughness of etched pattern. Also, flow mark and gate location can give influence on surface pattern molding. The experimental result can contribute to good molding of surface pattern in injection molding.

Modelling of an Automotive Block Type Thermostatic Expansion Valve (자동차용 블록식 온도감응 팽창밸브의 모델링)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.251-258
    • /
    • 2011
  • The objective of this study is to propose two empirical correlations to predict the mass flow rate through an automotive block type thermostatic expansion valve and then to evaluate the correlations. The first correlation is deduced by modifying the basic equation of the orifice meter for the mass flow rate and the second correlation is deduced by using the Buckingham's ${\pi}$ theorem. The first correlation showed very good agreement on the measured data for R134a, given by Monforte. Average relative deviation and standard deviation of it are 2.5% and 1.6%, respectively. The second correlation agreed on the same measured data with a little greater deviations. The two correlations may apply to common expansion valves which have different geometrical sizes of the same shape.

Study on the Load Frequency Control of Power System Using Neural Networks (신경회로망을 이용한 전력계통의 부하주파수제어에 관한 연구)

  • Joo, S.W.;Yoon, J.T.;Kim, S.H.;Chong, H.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.600-602
    • /
    • 1995
  • The paper presents neural network control techniques for load frequency control of two area power system. Using learning algorithm of error back propagation after learning accept input on the optimal control $e_{i}$, $\dot{e}_{i}$, and $u_{i}$ frequency characteristic and tie-line load flow characteristic investigated dynamic. From result simulation, frequency deviation and tie-line load flow deviation have reduction remarkable.

  • PDF

The efficiency of subtraction technique in a nonequilibrium molecular dynamics simulation of a simple liquid shear flow (단순액체의 층밀리기 흐름에 대한 비평형 분자동력학 계산에서 공제방법의 효과)

  • 안성청
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • Results from a nonequilibrium molecular dynamics (NEMD) simulation are presented for an argon liquid subject to a shear flow. The segmented molecular dynamics method and the subtraction technique used in NEMD program to reduce the thermal fluctuation noise in data are studied with different shear rates. The standard deviation in the shear stress reduced from 0.030 to 0.004 by the segmented molecular dynamics method for 50 repeated segments. On the other hand, the standard deviation of the data remained the same when the subtraction technique was applied, where as the results of shear stress by constant value in a random way.

  • PDF

Development of Temperature Control System for Cold Storage Room Using Fuzzy Logic (퍼지논리를 이용한 저온저장고의 온도제어시스템 개발)

  • 양길모;고학균;조성인
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.107-114
    • /
    • 2000
  • Low temperature storage method is to increase the value of agricultural products by reducing quality loss and regulate consignment time by controlling respiration rates of agricultural products. Respiration rate of agricultural products depends on several factors such as temperature, moisture, gas composition and a microbe inside the storage room. Temperature is the most important factor among these, which affects respiration rate and causes low or high temperature damage. Fuzzy logic was used to control the temperature of a storage room ,which uses information of uncertain facts and mathematical model for room temperature control . Room temperature was controlled better by using fuzzy logic control method rather than on-off control method. Refrigerant flow rates and temperature deviations were measured for on-off system using TEV(temperature expansion valve) and for fuzzy system using EEV(Electrical Expansion Valve) . Temperature of the Storage room was lowered faster by using fuzzy system than on -off system. Temperature deviation was -0.6~+0.9$^{\circ}C$ for on-off system and $\pm$0.2$^{\circ}C$ for fuzzy system developed. Temperature deviation and variation of temperature deviation were used as inout parameters for fuzzy system. The most suitable input and output value were found by experiment. Cooling rate of the storage room decreased while temperature deviation increased for the sampling time of 20 sec.

  • PDF

Generation of Fine Droplets in a Simple Microchannel (유체 소자를 이용한 미세 액적 생성)

  • Kim, Su-Dong;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2658-2663
    • /
    • 2008
  • In the present study, we designed a microfluidic flatform that generates monodisperse droplets with diameters ranging from hundreds of nanometers to several micrometers. To generate fine droplets, T-junction and flow-focusing geometry are integrated into the microfluidic channel. Relatively large aqueous droplets are generated at the upstream T-junction and transported toward the flow-focusing geometry, where each droplet is broken up into the targeted size by the action of viscous stresses. Because the droplet prior to rupture blocks the straight channel that leads to the flow-focusing geometry, it moves very slowly by the pressure difference applied between the advancing and receding regions of the moving droplet. This configuration enables very low flow rate of inner fluid and higher flow rate ratio between inner and outer fluids at the flow-focusing region. It is shown that the present microfluidic device can generate droplets with diameters about 1 micrometer size and standard deviation less than 3%.

  • PDF

The loss coefficient for fluctuating flow through a dominant opening in a building

  • Xu, Haiwei;Yu, Shice;Lou, Wenjuan
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.79-93
    • /
    • 2017
  • Wind-induced fluctuating internal pressures in a building with a dominant opening can be described by a second-order non-linear differential equation. However, the accuracy and efficiency of the governing equation in predicting internal pressure fluctuations depend upon two ill-defined parameters: inertial coefficient $C_I$ and loss coefficient $C_L$, since $C_I$ determines the un-damped oscillation frequency of an air slug at the opening, while $C_L$ controls the decay ratio of the fluctuating internal pressure. This study particularly focused on the value of loss coefficient and its influence factors including: opening configuration and location, internal volumes, as well as wind speed and approaching flow turbulence. A simplified formula was presented to predict loss coefficient, therefore an approximate relationship between the standard deviation of internal and external pressures can be estimated using Vickery's approach. The study shows that the loss coefficient governs the peak response of the internal pressure spectrum which, in turn, will directly influence the standard deviation of the fluctuating internal pressure. The approaching flow characteristic and opening location have a remarkable effect on the parameter $C_L$.