• Title/Summary/Keyword: Flow deflection

Search Result 196, Processing Time 0.025 seconds

Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing (반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가)

  • Ahn, Jin-Hong;Kang, Ki-Tai;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

NUMERICAL SIMULATION OF THE INTERFERENCE EFFECT OF EXTERNAL STORES AND TAIL WING SURFACES OF A GENERIC FIGHTER AIRCRAFT (전투기 형상의 외부 장착물과 꼬리 날개 공력 간섭에 대한 수치적 연구)

  • Kim, M.J.;Kwon, O.J.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.149-156
    • /
    • 2007
  • A three-dimensional inviscid flow solver has been developed based on unstructured meshes for the simulation of steady and unsteady flowfields around a generic fighter aircraft and for the investigation of the aerodynamic interference between the external stores and the tail surfaces. The flow solver is based on a vertex-centered finite-volume method and an implicit point Gauss-Seidel relaxation scheme. To validate the flow solver, calculations were made for a steady flow and the computed results were compared with experimental data. An unsteady time-accurate computation of the generic fighter aircraft with external stores at transonic flight conditions showed that the external stores cause undesirable vibration on the horizontal tail surface due to the mutual interference between their wake and the horizontal tail surface. It was shown that downward deflection of the trailing edge flap significantly reduces the undesirable interference effect.

  • PDF

A STUDY OF WARPAGE IN ONE WAY LONG PARTS (한 방향으로 긴 제품에 대한 변형연구)

  • Kim, Jong-Kab;Cho, Chae-Sung;Park, Sang-Deuck
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.741-744
    • /
    • 2000
  • In general there occur warpage in one way long part. Warpage is caused by differential shrinkage-Orientation Effect, Volumetric Shrinkage Effect, Differential Cooling Effect -over the part. Deco-Top is located at the top of 29"TV set and it's shape is one way long$(626{\times}130mm)$. Material is used transparency ABS resin. So we can't design ribs in this part. And we use film gate to avoid weld line. In these reasons we must develop no ribs and no warpage product. In this study we use MOLDFLOW's software-MF/FLOW, MF/COOL, MF/WARP. Using MF/FLOW, set the flow balance and gate positioning. And we can set cooling channel layout and the optimum processing condition through MF/COOL and MF/WARP. In result we reduced trials and obtained good product.

  • PDF

Flow Structure of the Wake behind an Elliptic Cylinder Close to a Free Surface

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1784-1793
    • /
    • 2001
  • The flow fields around an elliptic cylinder of axis ratio AR=2 adjacent to a free surface were investigated experimentally using a water channel. The main objective is to understand the effect of the free surface on the flow structure in the near-wake. The flow fields were measured by varying the depth of cylinder submergence, for each experimental condition, 350 velocity fields were measured using a single-frame PIV system and ensemble-averaged to obtain the spatial distribution of turbulent statics. For small submergence depths a large-scale eddy structure was observed in the near-wake, causing a reverse flow near the free surface, downstream of the cylinder. As the depth of cylinder submergence was increased, the flow speed in the gap region between the upper surface of the cylinder and the free surface increased and formed a substantial jet flow. The general flow structure of the elliptic cylinder is similar to previous results for a circular cylinder submerged near to a free surface. However, the width of the wake and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller tan those for a circular cylinder.

  • PDF

Dynamic Characterization of Passive Flow-Rate Regulator Using Pressure-Dependent Autonomous Deflection of Parallel Membrane Valves (압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기의 동적특성 평가)

  • Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.825-829
    • /
    • 2011
  • We performed a dynamic characterization of passive flow-rate regulators, which compensate for inlet pressure variation and maintain a constant flow rate for precise liquid control in microfluidic systems. To measure the flow rate for a short time, much less than the period of the dynamic inlet pressure, we use the particle image velocimetry (PIV) method. DI water containing fluorescent beads with a $0.7-{\mu}m$ diameter was supplied to the flow-rate regulators, and two successive images of the particles were taken by a pulse laser and a fluorescent microscope to measure the flow velocity. For a dynamic inlet pressure of frequency 60 Hz, the flow velocity was constant with an average of 0.194 ${\pm}$ 0.014 m/s as the inlet pressure varied between 20 kPa to 50 kPa. The flow-rate regulators provided a constant flow rate of $5.82{\pm}0.29\;{\mu}l/s$ in the frequency range of the inlet pressure from 1 Hz to 60 Hz.

NUMERICAL STUDY ON WIND TUNNEL GROUND PLATE WITH A PRESSURE CONTROL DEVICE (압력 조절 장치를 갖는 풍동 지면판에 관한 수치해석적 연구)

  • Lee, M.J.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.53-59
    • /
    • 2010
  • Preliminary design of a ground plate, a device installed close to the aircraft model for wind tunnel test to simulate the ground effect, was performed by a numerical simulation. A two-dimensional numerical study was performed initially to decide the optimal leading edge and flap configurations. Then, three-dimensional studies were conducted to decide the optimal flap deflection angle for pressure distribution reduction since the plate and the plate supporting system generate static pressure difference between the upper and lower flow regions. Three-dimensional simulation additionally studied the effect of the clearance between the plate and the wind tunnel side wall. For the efficiency of computation, half model was simulated and a symmetric boundary condition was applied on the center plane. Based on the preliminary design, a ground plate was designed, manufactured and tested at the Korea Aerospace Research Institute(KARI) wind tunnel. The measured pressure differences versus flap deflection angle agreed well with the predicted results.

A Numerical Analysis on the Airflow Characteristics in Super Cleanrooms with Different Design Types (초청정 클린룸 공조방식에 따른 기류특성에 관한 수치해석)

  • 노광철;이승철;오명도
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.751-761
    • /
    • 2003
  • We performed the numerical analysis on the airflow characteristics in the two type of cleanroom systems, which are the axial fan type (AFT) and the fan filter unit (FFU). A computational fluid dynamic model was applied to investigate and compare the nonuniformity, the deflection angle and the air ventilation effectiveness of the two designs of cleanrooms when dampers are adjusted and not adjusted. And the flow-resistance models of the various components were used in this simulation. We know that the airflow characteristics of the cleanrooms are largely affected by damper adjusting And we also find out that the FFU system is superior to the AFT system through the comparison of the cleanroom performance indices.

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

  • Li, Lei;Li, Changchun;Zhang, Hengxuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.176-188
    • /
    • 2017
  • The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper-nozzle null clearance is optionally recommended near the range of $D_N/16$. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

Characteristics of Flow over a Pair of Circular Cylinders in Side-by-Side Arrangements (나란히 배열된 한 쌍의 원형실린더를 지나는 유동의 특성)

  • Kang, Sang-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1754-1759
    • /
    • 2003
  • Two-dimensional flow over a pair of circular cylinders in side-by-side arrangements at low Reynolds numbers has been numerically investigated in this study. Numerical simulations are performed, using the immersed boundary method, in the ranges of $40{\leq}Re{\leq}160$ and $g^{\ast}<5$, where Re and $g^{\ast}$ are, respectively, the Reynolds number and the spacing between the two cylinder surfaces divided by the cylinder diameter. Results show that total six kinds of wake patterns are observed over the ranges: antiphase-synchronized, inphase-synchronized, flip-flopping, single bluff-body, deflected, and steady wake patterns. It is found that the characteristics of the flow significantly depends both on the Reynolds number and gap spacing, with the latter much stronger than the former. Instantaneous flow fields, time traces, flow statistics and so on are presented to identify the wake patterns and then to understand the underlying mechanism. It is remarkable that, for the deflected wake pattern, the gap flow is deflected invariably to the cylinder of higher drag coefficient and the deflection way does not change at all. Moreover, the bifurcation phenomena where either of two wake patterns can occur are found at certain flow conditions.

  • PDF