• Title/Summary/Keyword: Flow cone

Search Result 289, Processing Time 0.028 seconds

Properties of Purple-Fleshed Sweet Potato Antocyanin Pigment Solutions (자색고구마 Antocyanin 색소 추출액의 유동특성)

  • 이정주;임종환
    • Food Science and Preservation
    • /
    • v.8 no.1
    • /
    • pp.102-108
    • /
    • 2001
  • Flow properties of the concentrated pigment solutions extracted from purple-fleshed sweet potatoes were determined using a cone and plate rotational viscometer for soluble solids concentration range of 25 to 65% at temperature range of 20 to 60 $^{\circ}C$. The purple-fleshed sweet potato pigment solutions exhibited Newtonian behavior. Temperature dependency for the viscosity of the solution followed the Arhenius relationship with activation energy values between 14.23 and 43.00 kJ/mol, which increased linearly with soluble solids concentration. A relationship between viscosity, temperature and soluble solids concentration was investigated. At the same temperature, the viscosity of the concentrated pigment solutions increased exponentially as the concentration increased with higher degree of such phenomena at lower temperatures.

  • PDF

Theoretical Analysis of Annular Injection Supersonic Ejector with a Simple Funnel Shock Wave Model (깔때기 경사충격파를 고려한 환형 분사 초음속 이젝터 이론해석)

  • Kim Se-Hoon;Kwon Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • In an annular injection supersonic ejector, the supersonic primary flow is injected along the side wall, therefore a funnel-shaped shock wave is generated by the contraction angle of the mixing chamber. In the present study, we developed a simple funnel shock wave model using 2-D wedge and conical shock wave relations. In result, the secondary flow pressure can be predicted more accurately than using a simple 2-D wedge shock wave model. Through the same analysis, the compression ratio and the adiabatic efficiency according to the entrainment ratio were calculated.

Numerical Analysis of Secondary Injection for Thrust Vector Control on 2-Dimensional Supersonic Nozzle (2차원 초음속 노즐에서의 2차 유동분사에 의한 추력 방향 제어 특성의 수치적 해석)

  • 오대환;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 2000
  • The advantages of the SITVC (Secondary Injection for Thrust Vector Control) technique over mechanical thrust vectoring systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. The optimal operating conditions of SITVC were investigated using in-house developed compressible flow analysis codes. Numerical experiments were used to examine the impact of the thrust vector direction with a variety of injection positions, mass flow rates, and injection angles on the two-dimensional expansion cone of a supersonic nozzle. The computational results showed that the optimal position of the secondary injection, with the maximum deviation angle and side thrust, was where the oblique shock generated by the secondary injection reached the end of the nozzle exit.

  • PDF

A Study on Natural Supercavitation and Drag Characteristics of Axisymmetric Cavitators (축대칭 캐비테이터에서 발생하는 자연 초월공동과 항력 특성에 대한 연구)

  • Kim, Ji-Hye;Jeong, So-Won;Ahn, Byoung-Kwon;Jeon, Yun-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.465-472
    • /
    • 2016
  • A study was carried out to investigate typical features of natural supercavitation generated behind axisymmetric bodies such as disk and cone shaped cavitators. Main focuses of the study were to observe formation process of the supercavity and to measure drag forces acting on cavitators. Experiments were carried out at the cavitation tunnel of the Chungnam National University (CNU-CT), which has a capability to make sufficient flow speed for supercavitation experiments and to remove broken cavity bubbles coming back to the test section. Blockage effects on supercavity dimensions were evaluated and an effort was made to correlate tunnel experiments with unbounded flow. On the basis of experimental and numerical results, geometrical features of supercavities and characteristics of drag forces were examined and their relations were proposed.

Supersonic Flow Air Data Acquisition Algorithm Using Total Pressure Sensors (전압력센서를 적용한 초고속 유동데이터 산출 알고리즘)

  • Choi, Jong-Ho;Lee, Jae-Yoon;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.60-65
    • /
    • 2011
  • The development of an air data acquisition algorithm has been described in the supersonic flow at the preliminary design stage with pressure data acquisition device composed of major three total pressure sensors and two static pressure sensors which are installed on the surface of a cone type supersonic inlet. Through this algorithm, Mach number, angle of attack and sideslip angle can be very easily derived with simple interpolation algorithm and predefined data tables. The available range of Mach number is 1.6 to 4.0, angle of attack, $-12^{\circ}$ to $12^{\circ}$ and sideslip angle, $-12^{\circ}$ to $12^{\circ}$. In preliminary design stage, the data tables applied to the developed algorithm are constructed with data driven by Taylor Maccoll equation. The present algorithm would be useful to get supersonic flow air data for the various aerial vehicles and their flight tests.

Runoff Characteristics of a Small Catchment in Eoseungsaeng-oreum, Jeju Island (제주도 스코리아콘의 유출 특성 - 어승생오름 소유역을 사례로 -)

  • KIM, Taeho;AN, Junggi
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • In order to examine the runoff characteristics of scoria cones in Jeju Island, hydrological observations were conducted in the experimental basin (5.1 ha) of Eoseungsaeng-oreum which has been predominantly covered with Carpinus laxiflora and Quercus serrata. Although runoff has continuously occurred during the observed period, the baseflow gradually increased from April and decreased from October. The peak flow approximately corresponded to every rainfall events except for the rainfall events which has slight total precipitation and no previous precipitation. The experimental basin shows flash runoff response and short lag time; the mean lag time is 35.8 minutes. Although the runoff ratio of quick flow is proportional to total precipitation, the increasing rate is low and the maximum runoff ratio is 24.7%. In addition, the runoff ratio is less than 1% in 68.3% of the rainfall events, suggesting that the portion of quick flow to total precipitation is low. The rainfall events with relatively long event time demonstrated a secondary peak generated by translatory flow. The runoff characteristics seem to be related to local impermeable beds in the experimental basin.

Development and Performance Analysis of Gas Generator with Plunger-type Flow Control Valve for Ducted Rocket : Part II (Plunger 타입 유량조절장치를 적용한 덕티드 로켓용 가스발생기 개발 및 성능분석 : Part II)

  • Han, Seongjoo;Lee, Jungpyo;Cho, Sungbong;Khil, Taeock;Kim, Minkyum
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.87-92
    • /
    • 2021
  • In this study, a numerical approach was utilized to observe the phenomena in the ground combustion test of a gas generator for a ducted rocket with a plunger-type flow control device. The design factors were also identified through the analysis. It was observed that the pressure increase without the adhesion of the combustion product at the discharge pipe was quite similar to the analysis assuming a cone-shaped erosive burning effect. The pressure increase in most cases was similar to the analysis results when assuming the change in discharge pipe area due to the adhesion of combustion products. Moreover, it was also established that for a given grain shape and discharge flow area, the effect of the adhesion of combustion products has a significant effect on the combustion chamber pressure for cases over n=0.45.

Nanoleakage of apical sealing using a calcium silicate-based sealer according to canal drying methods

  • Yoon-Joo Lee;Kyung-Mo Cho;Se-Hee Park;Yoon Lee;Jin-Woo Kim
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2024
  • Objectives: This study investigated the nanoleakage of root canal obturations using calcium silicate-based sealer according to different drying methods. Materials and Methods: Fifty-two extracted mandibular premolars with a single root canal and straight root were selected for this study. After canal preparation with a nickel-titanium rotary file system, the specimens were randomly divided into 4 groups according to canal drying methods (1: complete drying, 2: blot drying/distilled water, 3: blot drying/NaOCl, 4: aspiration only). The root canals were obturated using a single-cone filling technique with a calcium silicate-based sealer. Nanoleakage was evaluated using a nanoflow device after 24 hours, 1 week, and 1 month. Data were collected twice per second at the nanoscale and measured in nanoliters per second. Data were statistically analyzed using the Kruskal-Wallis and Mann-Whitney U-tests (p < 0.05). Results: The mean flow rate measured after 24 hours showed the highest value among the time periods in all groups. However, the difference in the flow rate between 1 week and 1 month was not significant. The mean flow rate of the complete drying group was the highest at all time points. After 1 month, the mean flow rate in the blot drying group and the aspiration group was not significantly different. Conclusions: Within the limitations of this study, the canal drying method had a significant effect on leakage and sealing ability in root canal obturations using a calcium silicate-based sealer. Thus, a proper drying procedure is critical in endodontic treatment.

Prediction of Hydrofracture of Rock Salt under Ground at the Waste Isolation Pilot Plant (지하 핵 폐기물 저장 암염의 파괴현상 검증 및 분석)

  • Heo, Gwang-Hee;Lee, Cheo-Keun;Heo, Yol
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.139-162
    • /
    • 1995
  • The possibility of the development of gas driven hydrofractures at the Waste Isolation Pilot Plant(WIPP) is investigated through analytical and numerical calculations and through laboratory experiments. First, an investigation of the chemical reactions involved shows that a large volume of gas could potentially be generated through the oxidation of iron in the waste. Simple ground water'flow calculations then show that unless regions of high permeability has been created, this gas volume will build up the pressure high enough to cause tensile damage in the horizontal planes of weakness or in the halite itself. The analytical calculations were performed using the concepts of linear elastic fracture mechanics and the numerical calculations were done using the finite element method. Also, laboratory tests were conducted to illustrate possible failure mechanisms. It is possible that after growing horizontal crack in the weaker anhydride layer, the crack could break out of this layer and propagate upward into the halite and toward the ground surface at an inclined argle of around 53$^{\circ}$ above horizontal. To prevent this latter phenomenon the anhydrite must have a fracture toughness less than 0.5590 times than that of the halite. Through the tests, three types of crack(radial vertical cracks, horizontal circular cracks and cone -shaped cracks) were observed.

  • PDF

Development of A Boom Sprayer for Effective Pest-and-Disease Control on Densed Paddy Stems (수도(水稻) 기부(基部) 방제용(防除用) 붐-형(型) 주간(株間) 살포(撒布) 장치(裝置) 개발(開發)에 관(關)한 연구(硏究))

  • Chung, Chang Joo;Chang, Young Chang
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 1985
  • Spraying method from the paddy-field levee is known to give insufficient penetration of the spray droplets to the rice stem of the densely grown plants, which is generally encountered at the last stage of rice growth. This study was intended to investigate the spraying system to solve this existing problem. As an approach, it was attempted to develop the boom-with-nozzle, between-the-row application system. Several types of nozzles and their different arrangements in the boom were tested in the field to measure the penetration-reaching distance and the uniformity of spray droplet distribution. The results of the study are summarized as follows: 1. Field experiments by the spraying method from the paddy-field levee showed to have practically no penetration of the spray droplets to the portion of the plant stem with the normal flow volume generally applied and thus need for improving present spraying method. 2. It was found that, considering both the uniformity of the spray droplet distribution and performance rate, the most efficient type of nozzle in the between-the-row boom-type spraying system was one that has core-insert hollow-cone with some clearance between the cone and tip. 3. When tested by applying the spraying method of between-the-row, the nozzle pressure did not affect the uniformity of spray droplet distribution. However, the nozzle pressure had a positive effect on the penetrating-reaching distance of the facing side of the rice stem and did not affect much on that of the opposite face of the stem. It was also found that the maximum pressure to affect the penetration-reaching distance was about $10kg/cm^2$. 4. The uniformity of the spray droplet distribution in the between-the-row system was greatly affected by the height and orientation of the nozzles in the boom. Based on experimental work for the different type of the boom-with-nozzle arrangements, it is recommended that the position of nozzle is set at about 0.45 m above the ground and two nozzles in the boom are oriented to be faced with each other with some angle such that the droplet stream from the nozzle would not directly face with each other.

  • PDF