• Title/Summary/Keyword: Flow cone

Search Result 288, Processing Time 0.024 seconds

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Kim, B.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1370-1377
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change of the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural integrity of the material capsule called 04M-17U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19.6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's in-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

The efficacy of ultrasonography in monitoring the healing of jaw lesions

  • Zainedeen, Obai;Haffar, Iyad Al;Kochaji, Nabil;Wassouf, George
    • Imaging Science in Dentistry
    • /
    • v.48 no.3
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose: This study aimed to assess the reliability of ultrasonography (US) in comparison with cone-beam computed tomography (CBCT) as a tool for monitoring the healing of jaw lesions. Materials and Methods: Twenty-one radiolucent lesions in jaws referred to the Oral Surgery Department at our institution were selected for this study. All lesions underwent CBCT and US examinations. The anteroposterior, superoinferior, and mesiodistal dimensions of the lesions were measured on CBCT and US images before surgery and at 6 months after surgery. The dimensions were compared between the US and CBCT images. Blood-flow velocity around the lesions was measured by color Doppler before surgery and at 1 week and 6 months after surgery to assess the capability of US to show changes in blood-flow velocity around the lesion. Results: Before surgery, there were no significant differences between US and CBCT in the mesiodistal and anteroposterior dimensions, although a significant difference was found in the superoinferior dimension (P<.05). However, at 6 months after surgery, significant differences were found between US and CBCT in all dimensions, and it is likely that the US measurements more accurately reflected the extent of healing. The average blood-flow velocity increased at 1 week after surgery (5.84 cm/s) compared with the velocity before surgery (4 cm/s) (P<.05). Then, at 6 months after surgery, the blood-flow velocity significantly decreased (3.53 cm/s) compared to the velocity measured at 1 week after surgery (P<.05). Conclusion: US with color Doppler was confirmed to be a more efficient tool than CBCT for monitoring bone healing.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Lee, K.H.;Kim, B.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.782-787
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change or the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural Integrity of the material capsule called 04M-l7U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19 6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's In-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

  • PDF

DSMC Calculation of the Hypersonic Free Stream and the Side Jet Flow Using Unstructured Meshes (비정렬 격자 직접모사법을 이용한 희박 유동과 측면 제트의 상호 작용에 관한 연구)

  • Kim M. G.;Kwon O. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.126-131
    • /
    • 2004
  • The interaction between the hypersonic free stream and the side jet flow at high altitudes is investigated by direct simulation Monte Carlo(DSMC) method. Since there is a great difference in density between the free stream and the side jet flow, the weighting factor technique which could control the number of simulation particles, is applied to calculate these two flows simultaneously. Chemical reactions are not considered in the calculation. For validation, the corner flow passing between a pair of plates that are perpendicularly attached is solved. The side jet flow is then injected into this comer flow and solution is found for the merged flow. Results are compared with the experiments. For a more realistic rocket model, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet injection is merged with this flow. The effect on the rocket surface is observed at various flow angles. The lambda effect and the wake structure are found like low attitudes. High interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

  • PDF

Flow Resistance and Modeling Rule of Fishing Nets -2. Flow Resistance of Bag Nets- (그물어구의 유수저항과 모형수칙 -2. 자루형 그물의 유수저항-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 1995
  • In order to make clear the resistance of bag nets, the resistance R of bag nets with wall area S designed in pyramid shape was measured in a circulating water tank with control of flow velocity v and the coefficient k in $R=kSv^2$ was investigated. The coefficient k showed no change In the nets designed in regular pyramid shape when their mouths were attached alternately to the circular and square frames, because their shape in water became a circular cone in the circular frame and equal to the cone with the exception of the vicinity of frame in the square one. On the other hand, a net designed in right pyramid shape and then attached to a rectangular frame showed an elliptic cone with the exception of the vicinity of frame in water, but produced no significant difference in value of k in comparison with that making a circular cone in water. In the nets making a circular cone in water, k was higher in nets with larger d/l, ratio of diameter d to length I of bars, and decreased as the ratio S/S_m$ of S to the area $S_m$ of net mouth was increased or as the attack angle 9 of net to the water flow was decreased. But the value of ks15m was almost constant in the region of S/S_m=1-4$ or $\theta=15-90^{\circ}$ and in creased linearly in S/S_m>4 or in $\theta<15^{\circ}$ However, these variation of k could be summarized by the equation obtained in the previous paper. That is, the coefficient $k(kg\;\cdot\;sec^2/m^4)$ of bag nets was expressed as $$k=160R_e\;^{-01}(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for the condition of $R_e<100$ and $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for $R_e\geq100$, where $S_n$ is their total area projected to the plane perpendicular to the water flow and $R_e$ the Reynolds' number on which the representative size was taken by the value of $\lambda$ defined as $$\lambda={\frac{\pi d^2}{21\;sin\;2\varphi}$$ where If is the angle between two adjacent bars, d the diameter of bars, and 21 the mesh size. Conclusively, it is clarified that the coefficient k obtained in the previous paper agrees with the experimental results for bag nets.

  • PDF

APPLICATION OF CFD TECHNIQUE TO PERFORMANCE PREDICTION OF SPRAY CHARACTERISTICS OF WATER-MIST FIRE SUPPRESSION NOZZLES (미분무수 소화 노즐의 분무 특성 예측을 위한 CFD기법의 적용)

  • Chung, H.T.;Lee, C.H.;Cho, B.I.;Han, Y.S.;Ock, Y.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.56-61
    • /
    • 2006
  • Numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied for analyzing both the internal and external flow of the spray nozzles. Computations were made for the full cone nozzle in the operation range of the low pressure and high flow-rate. To validate the present computational procedure, numerical results are compared with measurements in terms of K-factor, SMD, axial spray velocity and spray angles. Numerical results suggested that the present numerical model can be used as an adequate tool for a design purpose of mist-spray nozzles.

Experimental Investigation on the Turbulence Augmentation of a Gun-type Gas Burner by Slits and Swirl Vanes

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1819-1828
    • /
    • 2004
  • The purpose of this paper is to investigate the effects of slits and swirl vanes on the turbulence augmentation in the flow fields of a gun-type gas burner using an X-type hot-wire probe. The gun-type gas burner adopted in this study is composed of eight slits and swirl vanes located on the surface of an inclined baffle plate. Experiment was carried out at a flow rate of 450 ι/min in burner model installed in the test section of subsonic wind tunnel. Swirl vanes playa role diffusing main flow more remarkably toward the radial direction than axial one, but slits show a reverse feature. Consequently, both slits and swirl vanes remarkably increase turbulence intensity in the whole range of a gun-type gas burner with a cone-type baffle plate.

Application of CFD Technique to Performance Prediction of Spray Characteristics of Fire Suppression Nozzles (소화 노즐의 분무 특성 예측을 위한 CFD 기법의 적용)

  • Chung, H.;Lee, C.;Jung, H.;Choi, B.;Han, Y.;Ohck, Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.233-239
    • /
    • 2005
  • In the present study, numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied in both the internal and external flow region of the spray nozzles. Applications were done to the full cone nozzle for the operation range of the low pressure and high flow-rate. Numerical validation was proved by the comparison of the experimental data. Parametric study of the key design factors was tried to improve the performance.

  • PDF

Flow-Feedback for Pressure Fluctuation Mitigation and Pressure Recovery Improvement in a Conical Diffuser with Swirl

  • Tanasa, Constantin;Bosioc, Alin;Susan-Resiga, Romeo;Muntean, Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce the flow-feedback approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. Experimental investigations on mitigating the pressure fluctuations generated by the precessing vortex rope and investigations of pressure recovery coefficient on the cone wall with and without flow-feedback method are presented.

Spray characteristics of swirl injector using liquid film thickness measurement (액막두께 측정방법을 이용한 스월 인젝터의 분무특성 연구)

  • Kim Sung-Hyuk;Kim Dong-Jun;Kim Byung-Sun;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.251-255
    • /
    • 2005
  • By using liquid film thickness measurement the spray characteristics of swirl injector according to the geometric parameters were investigated in this paper. A specially designed injector having a variable backhole length, swirl chamber length, orifice length was used to measure the liquid film thickness. The spray characteristics of the injector were represented by mass flow rate according to the injection pressure, liquid film thickness in the lower orifice, spray cone angle.

  • PDF