• 제목/요약/키워드: Flow close

검색결과 824건 처리시간 0.027초

Plasma Flows and Bubble Properties Associated with the Magnetic Dipolarization in Space Close to Geosynchronous Orbit

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권2호
    • /
    • pp.95-100
    • /
    • 2013
  • In this paper we examine a total of 16 dipolarization events that were observed by THEMIS spacecraft in space close to geosynchronous orbit, r < ${\sim}7\;R_E$. For the identified events, we examine the characteristics of the plasma flows and associated bubbles as defined based on $pV^{5/3}$, where p is the plasma pressure and V the volume of unit magnetic flux. First, we find that the flow speed in the near-geosynchronous region is very low, mostly within a few tens of km/s, except for a very few events for which the flow can rise up to ~200 km/s but only very near the dipolarization onset time. Second, the bubble parameter, $pV^{5/3}$, decreases by a much smaller factor after the dipolarization onset than for the events in the farther out tail region. We suggest that the magnetic dipolarization in the near-geosynchronous region generates or is associated with only very weak plasma bubbles. Such bubbles in the near-geosynchronous region would penetrate earthward only by a small distance before they stop at an equilibrium position or drift around the Earth.

도시하천에서 자연형 저수로 호안공법의 적용과 식생복원 모니터링 - 서울시 양재천의 학여울 구간을 사례지역으로 - (Application of Close-to Nature Revetment Techniques Adapted to Low Flow Channel & Monitoring of Vegetation Restoration - Case Study for Hakyoul in the Yangjaech'on -)

  • 최정권
    • 한국환경생태학회지
    • /
    • 제11권2호
    • /
    • pp.210-213
    • /
    • 1997
  • 본 연구는 하천환경의 생태적 재생을 목적으로 자연형 저수로 호안공법을 개발하기 위해 수행되었다. 이를 위해 실험하펀으로 선정한 양재천 학여울 구간에 사주부, 수충부, 얕은 만 3가지 유형의 하안경관 특성에 따라 촌 10가지 공법을 개발, 시험 족용하였다. 각 호안공법의 설계에서는 정수식물의 식재에 중점을 두었으며 설계된 공법들은 현장 적용되었고, 적용후 1년간의 경관 형성과정과 식생복원 모니터링을 실시ㅏ였다. 일ㄹ 통해 자연형 저수로 호안공법의 기술적 실행 가능성을 높여, 관행적으로 행해지고 있는 하천공법을 대체할 수 있는 생태적 대안을 제시하였다.

  • PDF

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.471-476
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and c lose type heat pump system using effluent ground water was installed and tested for it church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000$ ton/day. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

축압기를 갖는 유압관로의 동특성에 관한 연구 (Dynamic Response of Hydraulic Transmission Lines with an Accumulator)

  • 이일영;홍봉기
    • 수산해양기술연구
    • /
    • 제17권1호
    • /
    • pp.29-34
    • /
    • 1981
  • More recently, unsteady flow in small-diameter pipes plays a major role in liquid propellantrocket systems, hydraulic and pneumatic control system, and elsewhere. And it has shown that line dynamics can have a marked effect on the hydraulic system characteristics. In this paper, transfer function of hydraulic lines with an accumulator and an outlet orifice is' developed and compared with experimental data from frequency response tests at various airvolume(V.) and the location of accumulator(ld1t), so that their performance may be correctly and easily predicted and the design of the systems incorporating them improved. The obtained results are as follows: 1. The dynamic response of hydraulic lines may be analyzed more accurately by use of the viscous term(22) in unsteady laminar flow. 2. There was good agreement between the theoretical and experimental results of this investigation, and hydraulic systems with liines included an accumulator can be analyzed more accurately by use of the pressure transfer function given by eq. (16). 3. For the mitigation of surge in hydraulic lines, it is more effective that the location ofaccumulator is close to the pipe outlet side. 4. According to the gas volume of accumulator is increased(the sealing pressure is close tomean line pressure), the damping effect of pressure wave is improved.

  • PDF

FINE SEGMENTATION USING GEOMETRIC ATTRACTION-DRIVEN FLOW AND EDGE-REGIONS

  • Hahn, Joo-Young;Lee, Chang-Ock
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권2호
    • /
    • pp.41-47
    • /
    • 2007
  • A fine segmentation algorithm is proposed for extracting objects in an image, which have both weak boundaries and highly non-convex shapes. The image has simple background colors or simple object colors. Two concepts, geometric attraction-driven flow (GADF) and edge-regions are combined to detect boundaries of objects in a sub-pixel resolution. The main strategy to segment the boundaries is to construct initial curves close to objects by using edge-regions and then to make a curve evolution in GADF. Since the initial curves are close to objects regardless of shapes, highly non-convex shapes are easily detected and dependence on initial curves in boundary-based segmentation algorithms is naturally removed. Weak boundaries are also detected because the orientation of GADF is obtained regardless of the strength of boundaries. For a fine segmentation, we additionally propose a local region competition algorithm to detect perceptible boundaries which are used for the extraction of objects without visual loss of detailed shapes. We have successfully accomplished the fine segmentation of objects from images taken in the studio and aphids from images of soybean leaves.

  • PDF

Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete

  • Mohamed, Sahraoui;Taye, Bouziani
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.97-105
    • /
    • 2019
  • In this paper, the workability and static stability were evaluated using a proposed test method. Workability and static stability represent a key property of self-compacting concrete (SCC) in fresh state. A number of standardized test methods were developed to assess these properties. However, no accelerated test method reliably predicts both workability and static stability of SCC. In the present work, a modified K-slump test method was developed to evaluate workability and static stability of SCC. In order to take implicit mixture variations of SCC constituents that can affect fresh SCC properties, a central composite design was adopted to highlight the effect of gravel to sand ratio (G/S), gravel 3/8 to gravel 8/15 ratio (G1/G2), water to cement ratio (W/C), marble powder to cement ratio (MP/C) and superplasticizer content (SP) on workability measured with slump and flow time (T50) tests and static stability measured with sieve stability test (Pi), segregation test index (SSI), Penetration test (Pd) and the proposed K-slump test (Km). The obtained results show that G/S ratio close to 1 and G1/G2 ratio close to 60% can be considered as optimal values to achieve a good workability while ensuring a sufficient static stability of SCC. Acceptable relationships were obtained between Slump flow, Pi, Pd and Km. Results show that the proposed K-slump test allow to assess both workability and static stability of fresh SCC mixtures.

신장과 노력성 호기곡선 지표간의 상관성 (Correlations Between Height and Forced Expiratory Flow Curve Parameters)

  • 진복희;박선영;박혜림
    • 대한임상검사과학회지
    • /
    • 제36권2호
    • /
    • pp.199-204
    • /
    • 2004
  • Height has become one of the most important factors to determine the pulmonary function test index, and there is a high correlation between them, so that they have been utilized for evaluating pulmonary function test predictive value or nomogram. Therefore, we have tried to find out that difference and if there is any correlation and linear relationship between height and forced expiratory flow curve. There were a total of 163 subjects, male 93 and female 70. This study was done at the Department of Pulmonary Function Test of Jeon-Ju Presbyterian Hospital and we measured the index at the forced expiratory flow curve of FVC, $FEV_{1.0}$, $FEV_{1.0}$/FVC, $FEF_{25-75%}$, and $FEF_{200-1200m{\ell}}$. When we subjected the group of height more than 160cm, there were gradual increments at FVC(p<0.001), $FEV_{1.0}$(p<0.001), $FEF_{25-75%}$(p<0.05) and $FEF_{200-1200m{\ell}}$(p<0.001), but no changes at $FEV_{1.0}$/FVC in terms of forced expiratory flow curve index. We have analyzed the relationship between height and forced expiratory flow curve, there was a close relationship at FVC(r=0.670, p<0.01), $FEV_{1.0}$(r=0.491, p<0.01), $FEF_{25-75%}$ (r=0.175, p<0.05) and $FEF_{200-1200m{\ell}}$(r=0.370, p<0.01) but there was reciprocal relationship at $FEV_{1.0}$/FVC(r=-0.215, p<0.01). We have tried simple regression analysis to see if height affects forced expiratory flow curve index as a sector, and the result was $FVC(\ell)=0.0642{\times}height(cm)-7.2978$(p<0.01, $R^2=0.449$), $FEV_{1.0}(\ell)=0.0407{\times}height(cm)-4.2774$ (p<0.01, $R^2=0.2411$), $FEV_{1.0}/FVC(%)=-0.2892{\times}height(cm)+121.44$(p<0.01, $R^2=0.0464$), $FEF_{25-75%}(\ell/sec)=0.0176{\times}height(cm)-0.7876$(p<0.05, $R^2=0.0237$), $FEF_{200-1200m{\ell}}(\ell/sec)=0.0967{\times}height(cm)-11.037$(p<0.01, $R^2=0.1214$) this was approved statistically. According to this study, if height is taller than average, forced expiratory flow curve index were increased, there was a close relationship between height and forced expiratory flow curve, and there was a linear relationship as sector between height and forced expiratory flow curve index. Therefore, researches that study other factors such as sex, age, weight, body surface area, and obesity indexes other than height should be done to see if there are any further relationships.

  • PDF

전산유체해석(CFD) 모의를 이용한 다공형 스크류 노즐 입수관이 적용된 물탱크 내부의 사류구역 최소화에 대한 유동특성 (Fluid Flow Characteristics for Minimizing the Area of Rapid Flow Inside the Water Tank to which the Multiple Hoe Screw Nozzle Incurrent Canal is Applied, by Using the Computational Fluid Dynamics (CFD) Simulation)

  • 송준혁;권종우;최종웅;왕창근
    • 대한환경공학회지
    • /
    • 제37권1호
    • /
    • pp.23-33
    • /
    • 2015
  • 본 연구는 물탱크 내부의 사류구역 최소화에 목적을 두고 진행하였으며 입수관의 형태를 개선하여 물탱크 내부에서 발생하는 유동특성을 전산유체역학(Computational Fluid Dynamics, CFD)모사 기법을 이용하여 분석 하였다. 기존에 물탱크에 사용되던 자유낙하 방식의 입수관을 다공형 스크류 노즐 입수관으로 개선하고 유동 특성을 분석한 결과 노즐 안에 스크류 날개가 설치된 경우 유동흐름의 폭이 넓게 분사 되었으며 원통형 물탱크 내부에서도 넓은 유동 흐름이 나타났다. 또한 사각형 물탱크에 다공형 스크류 노즐 입수관이 1개 설치되어 있을 경우와 2개 설치되어있을 경우의 유동해석과 추적자모의를 수행하였으며 그 결과 입수관을 2개 설치할 경우 MODAL, MORILL index값이 1에 가깝게 나타나 Plug Flow 특성에 근접하단 결과를 얻을 수 있었다.

PIV 유동 계측을 통한 천장형 실내기의 최적 제어 설계 (Optimal Flow Control of Ceiling Type Indoor Unit by PIV Measurements)

  • 성재용;안광협;이기섭;최호선;이인섭
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1042-1050
    • /
    • 2003
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated to determine the design parameters for the optimal flow control. The flow was measured by a PIV(particle image velocimetry) system and an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number. This similarity is generally used in cases where the forced convection has similar magnitude of the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, experimental results show that 30$^{\circ}$is an optimal angle to avoid re-suction flows without significant increase in flow noise. Temperature distribution measured in the environmental chamber ensures the increased thermal comfort when compared to the case, 60$^{\circ}$angle. At the optimal angle, applying open/close control gives rise to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for thermal comfort.

기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구 (A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow)

  • 전구식;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF