• 제목/요약/키워드: Flow characteristics analysis

검색결과 4,763건 처리시간 0.033초

Servo valve의 유동해석 (Flow Analysis of Servo Valve)

  • 박홍범;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1221-1225
    • /
    • 2008
  • In this paper, analysis of pressure and flow characteristics have been performed with a servo valve. A number of servo valve have been used in various applications including the inserting device, bearing transportation and welding machine. By analysis of flow and pressure gradient, technology can be obtained about optimal simulation of high response servo valve for competitiveness. Spool displacement and ratio of inlet/outlet pressure can give big effects to flow and pressure inside servo valve.

  • PDF

Flow Divider Valve의 최적설계를 위한 동특성 해석 (Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve)

  • 황태영;박태조
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve는 한 개의 공급라인에서 두 개 이상의 출력라인으로 유압유를 일정비율로 분배하는 유압제어밸브로서 하중압력이나 공급압력 등에 관계없이 항상 일정비율의 유량분배가 가능해야 한다. 현재 상용제품의 유량분할 정확도는 90~95% 수준이며, 이러한 유량분할오차(Flow dividing error)는 유압시스템에 누적오차로 작용하여 많은 문제점을 야기시키고 있어 보다 고정밀 유량제어가 가능한 Flow divider valve 개발이 요구된다. 본 연구에서는 외력을 고려한 스푸울의 거동을 수치적으로 정확하게 조사하여 Flow divider valve의 동특성을 규명함과 동시에 유량분할 오차를 감소시키는 최적설계방안을 제시하고자 한다. 동특성 해석은 일정한 하중저항을 입력신호로 작용하는 경우에 대해서 제시하였으며, 이때의 고정오리피스와 가변오리피스의 단면적 및 스푸울의 단면적 변화에 따른 동특성의 변화를 조사하였다.

  • PDF

로터리 버너의 축류형 팬 주위 유동특성 연구 (A Study on the Flow Characteristics Around an Axial Fan of Rotary Burner)

  • 고동국;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2003
  • The flow analysis of the axial fan of rotary burner was performed by SIMPLE(Semi Implicit Method for Pressure Linked Equations) algorithm and finite volume mothod performed in the case of 3-D, incompressible, turbulent flow. In this study, the coordinate transformation was adapted for the complex geometry of axial fan, and the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent flow. Multi-block grid system was used for flow field and divided into four domains such as the inlet, outlet, flow field of rotating vane, and tip clearance. Fan rotation was simulated by rotational motion using MRF(Multiple Rotating Reference Frame) in steady, incompressible state flow.

  • PDF

환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구 (Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor)

  • 김재우;김진혁;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

파워 스티어링용 베인 펌프 유량 제어부 설계에 관한 연구 (A Study on the Design of Flow Control Valve Attached to Vane Pump for Power Steering)

  • 이윤태
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.87-95
    • /
    • 2000
  • The numerical analysis and the experiments are carried out to develop the design program for the flow control valve attached to the vane pump for power steering. The factors affecting the flow rate characteristics are analyzed by the experiments and the numerical analysis. The results are summarized as follows; (1) the main factors affecting to the first and second control flow rate are the diameter of big and small rod of the spool. (2) the cut off is mainly affected by the main spring constant, the initial displacement of main spring and the small diameter of the spool. (3) the dropping slope characteristics are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

유동학적 인자에 따른 토석류의 이동 및 퇴적 특성 (Movement and Deposition Characteristics of Debris Flow According to Rheological Factors)

  • 이미지;김윤태
    • 한국지반공학회논문집
    • /
    • 제29권5호
    • /
    • pp.19-27
    • /
    • 2013
  • 여름철 강우로 인한 산사태는 대부분 토석류의 형태로 나타난다. 토석류는 빠른 이동속도와 체적 때문에 경제적 손실 뿐만 아니라 많은 인명피해를 일으킨다. 토석류 해석 프로그램인 FLO-2D를 사용하여 유동학적 인자인 점성과 항복응력에 따른 토석류의 이동과 퇴적 특성을 분석하였다. 수치해석을 수행한 결과, 점성이 증가할수록 토석류 입자간의 응집력이 증가하여 토석류의 퇴적거리와 속도가 감소한다. 그에 따라 유동심은 증가하고 충격력은 감소하였다. 항복응력은 토석류의 발생과 퇴적에 큰 영향을 미치는 요인이다. 항복응력이 증가할수록 충격력은 증가하였다. 수치 해석 결과에 의하면, 토석류의 이동속도는 주로 점성에 의존하나 토석류의 퇴적 특성(퇴적거리, 퇴적 폭, 퇴적면적)은 점성과 항복응력에 의존한다.

소형어선용 어창내의 열 유동특성 해석 (Numerical Analysis of Fluid and Thermal Characteristics on Live Fishing Tank of Small Fishing Boat)

  • 한인근;문춘근;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1324-1329
    • /
    • 2001
  • The depression of the external situation like the departure of WTO system and the plan of EEZ proclaim is forcing fishery into improving their fishing condition. By this international and domestic circumstance, development of the sea water cooling apparatus for fish hold storage is demanded sincerely. This study represents the thermal characteristics of the fish hold storage during transportation. The numerical analysis in this study is the finite volume method with the SIMPLE computational algorithm to study the seawater flow behavior in the fish hold storage. The computation were carried out with the variations of the circulating flow velocity and depth of fish hold storage. As the result of the three dimensional simulations, the mean temperature doesn't almost change by the circulating flow rate. find the mean temperature is suddenly changed by the ratio of depth of fish hold storage.

  • PDF

수치해석 기법을 이용한 호흡 유량에 따른 사람의 기도 내 유동 특성 연구 (Numerical Analysis on the Flow Characteristics Considering the Inspiratory Flow Rate in a Human Airway)

  • 성건혁;유홍선
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권4호
    • /
    • pp.177-183
    • /
    • 2012
  • The inspiratory flow rate of a human is changed with the amount of the workload. The flow characteristic is affected by the inspiratory flow rate. In the flow field of airway, the both of turbulence intensity and secondary flow affect the deposition pattern of particles which is important for the drug-aerosol targeting. Thus the analysis of the flow characteristic in a human airway is important. The purpose of this study is to investigate the effects of the inspiratory flow rate on the flow characteristics in a human airway. The tubular airway is consistent with the oral cavity, pharynx, larynx and trachea. The relatively inspiratory flow rate is used at each case of human states regarding the workload. By the effect of geometric airway changes, transition to turbulent airflow after the larynx can occur with relaminarization further downstream. The low Reynolds number k-${\omega}$ turbulence model is used for analysis with flow regime. As the inspiratory flow rate is larger, the turbulence kinetic energy and secondary flow intensity increase in airway. On the other hand, the area of recirculation zone is smaller.

개방된 챔버 입구에서 작동하는 소형 프로펠러 팬 주위의 난류유동해석 (Numerical analysis of turbulent flow around a small propeller fan operating at the inlet of open chamber)

  • 오건제;강신형
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1586-1594
    • /
    • 1997
  • Performance characteristics of a small propeller fan are numerically investigated solving the continuity and Reynolds-averaged Navier-Stokes equations. The Reynolds stresses for turbulent transport are modelled using a k-.epsilon. turbulence model. The present numerical procedure is constructed using the Finite Volume Method with the SIMPLE algorithms. The performance parameters obtained from the calculations are compared with the measured values for the various flow rates. A performance test of the fan shows different characteristics between a radial type at small flow rates and an axial type at large flow rates. Comparisons between the predictions and the measurements show that the predicted results are in good agreement with the measured values and reasonably reproduce the sharp variations of the power and head coefficient around a flow coefficient .PHI.=0.3. These comparisons indicate that the present numerical method is capable of resolving the performance characteristics with reasonable accuracy. At low flow rates, it is found that the flow enters the fan in an axial direction and is discharged radially outward at the tip which happens in the centrifugal fan. The centrifugal effect makes a significant difference in the characteristics of a fan at the low and high values of flow coefficient.

2차원 수치해석모형을 이용한 낙동강 중류구간의 하천흐름 해석 (Analysis of Hydraulic Characteristics in the Middle Reaches of Nak-Dong River using 2-Dimensional Numerical Analyis Model)

  • 한성대;최현;안창환;이제윤
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1732-1736
    • /
    • 2008
  • The characteristics of a river flow analysis are significant for river maintenance plan. At the present time, HEC-RAS, 1-Dimensional Numerical Analysis Model, is mainly applied to analyze the character of a river flow. The shape of a river is somewhat in longitudinal linear form. It was suspected that the usage of 1-dimensional numerical analysis model is more economical. Development of numerical analysis models and computers are possible to calculate large volume. Hence, it is possible to adapt the analysis of the key stations by 2-dimensional numerical analysis model. The limitation of 1-Dimensional Numerical Analysis Model is that it is hard to evaluate structure affection of numerical simulation by energy loss coefficient at river structure analyzing. When adaptation of the 2-dimensional numerical analysis model in river structure ensues, it takes more objective analyzing than 1-dimensional numerical analysis model for flow affection by river structure. 2-dimensional numerical analysis model consults with the different structure position of hydraulic characteristics and different water depth of shape and scope in vertical flow. 1-dimensional numerical analysis model is possible to simulate with only energy loss coefficient for sudden river section changing, sudden waterway changing by curved. 2-dimensional numerical analysis model use original geographical features. So the model removes technical subjectivity of faulty judgment. It is an objective analysis.

  • PDF