• Title/Summary/Keyword: Flow channel design

Search Result 517, Processing Time 0.025 seconds

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

Conical Diffuser Design and Hydraulic Performance Characteristics in Bioreactor Using Empirical and Numerical Methods (원뿔형 산기관 설계와 생물반응조에서 수력학적 운전특성에 관한 실험 및 해석)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.633-643
    • /
    • 2015
  • In this study, we develop a highly efficient conical-air diffuser that generates fine bubble. By inserting a sufficient number of aerotropic microorganisms with dissolved oxygen from an air diffuser and minimizing the air-channel blockages within the air diffuser, we expect to improve the efficiency and durability of the decomposition process for organic waste. To upgrade the conventional air diffuser, we perform experiments and numerical analysis to develop a conical-type that generates fine bubble, and which is free from nozzle blockage. We complement the air-diffuser design by numerically analyzing the internal air-flow pattern within the diffuser. Then, by applying the diffuser to a mockup bioreactor, we experimentally and numerically study the bubble behavior observed in the diffuser and the 2-phase fluid flow in the bioreactor. The results obtained include statistics of the cord length and increased velocity, and we investigate the mechanisms of the fluid-flow characteristics including bubble clouds. Throughout the study, we systemize the design procedures for the design of efficient air diffusers, and we visualize the fluid-flow patterns caused by bubble generation within the mockup bioreactor. These results will provide a meaningful basis for further study as well as the detection of oxygen transfer and fluid-flow characteristics in real-scale bio-reactors using sets of air diffusers.

Computational Model for Flow in River Systems Including Storage Pockets with Side Weirs (횡월류형 강변저류지를 포함하는 하천수계에 대한 수리학적 계산모형)

  • Jun, Kyung-Soo;Kim, Jin-Soo;Kim, Won;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.139-151
    • /
    • 2010
  • A quasi-two-dimensional unsteady flow model was developed for simulating the flow in a river system including artificial storage pockets with side weirs. It is a multiply-connected network which combines channels and storage pockets. The channel flow is described by the one-dimensional Saint Venant equations, and the weir overflow flow by the cell continuity and stage-discharge relations. The model was applied to the Imjin river system including six artificial storage pockets. Design flood peak reduction due to storage pockets is not sensitive to the side weir discharge coefficient. Storage pockets downstream are less effective than upstream ones in reducing peak stage as the backwater effect becomes more dominant. Simulated flood control effect is highly sensitive to the roughness coefficient. The uncertainty due to the roughness coefficient increases as the weir crest elevation gets higher. Because the best design alternative varies with the roughness coefficient, proper estimation of it is essential to the design of side weirs. Moreover, uncertainty of the estimation needs to be considered in the design process.

Heat-Transfer Performance Analysis of a Multi-Channel Volumetric Air Receiver for Solar Power Tower (타워형 태양열 발전용 공기흡수기의 열전달 성능해석)

  • Jung, Eui-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.277-284
    • /
    • 2012
  • In this study, a heat-transfer performance analysis is carried out for a multi-channel volumetric air receiver for a solar power tower. On the basis of a series of reviews regarding the relevant literature, a calculation process is proposed for the prediction of the wall- and air- temperature distributions of a single channel at given geometric and input conditions. Furthermore, a unique mathematical model of the receiver effectiveness is presented through analysis of the temperature profile. The receiver is made of silicon carbide. A total of 225 square straight channels per module are molded to induce the air flow, and each channel has the dimensions of $2mm(W){\times}2mm(H){\times}0.2mm(t){\times}320mm(L)$. The heat-transfer rate, temperature distribution and effectiveness are presented according to the variation of the channel and module number under uniform irradiation and mass flow rate. The available air outlet temperature applied to the solar power tower should be over $700^{\circ}C$. This numerical model was actually used in the design of a 200 kW-level commercial solar air receiver, and the required number of modules satisfying the thermal performance could be obtained for the specified geometric and input conditions.

Unsteady Flow Analysis for the Design of Local Scour Protection by HEC-RAS(UNET) Model in the River Reach Affected by Tide (HEC-RAS 모형에 의한 감조하천구간 부정류 해석 및 세굴보호공 설계)

  • Namgung, Don;Cho, Doo-Chan;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1138-1142
    • /
    • 2005
  • The tidal river is a river affected by tide, which causes the water level to rise and fall two times everyday periodically. The local velocity across the river could be very fast because of the cross-sectional characteristics of the river even though it's not a rainy season. Therefore extreme local scour could take place around hydraulic structures such as piers and caissons due to backward flow velocity. For the construction of pier foundation of Ilsan-bridge In the Han River, the field observations were performed to get the velocity and water level. The numerical analysis was performed by HEC-RAS(UNET). The relationship between measured maximum velocity and calculated mean velocity is achieved, which is used to estimate the velocity and water level as the construction is proceeding. Countermeasures for scour were designed with the results of the hydraulic analysis to avoid potential damage during construction work. According to the results of monitoring, the velocity increase after temporary road embankment was negligible, from which it is considered that the degradation of main channel compensated for the constriction of cross-section by embankment.

  • PDF

Convective Boiling Two-phase Flow in Trapezoidal Microchannels : Part 1-Pressure Drop Characteristics (사다리꼴 미세유로의 대류비등 2상유동 : 1부-압력강하 특성)

  • Kim, Byong-Joo;Kim, Geon-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.87-94
    • /
    • 2011
  • Characteristics of two-phase pressure drop in microchannels were investigated experimentally. The microchannels consisted of 9 parallel trapezoidal channels with each channel having $205\;{\mu}m$ of bottom width, $800\;{\mu}m$ of depth, $3.6^{\circ}$ of sidewall angle, and 7 cm of length. Pressure drops in convective boiling of Refrigerant 113 were measured in the range of inlet pressure 105~195 kPa, mass velocity $150{\sim}920\;kg/m^2s$, and heat flux $10{\sim}100\;kW/m^2$. The total pressure drop generally increased with increasing mass velocity and/or heat flux. Two-phase frictional pressure drop across the microchannels increased rapidly with exit quality and showed bigger gradient at higher mass velocity. A critical review of correlations in the literature suggested that existing correlations were not able to match the experimental results obtained for two-phase pressure drop associated with convective boiling in microchannels. A new correlation suitable for predicting two-phase friction multiplier was developed based on the separated flow model and showed good agreement with the experimental data.

Active Control of Flow Noise Sources in Turbulent Boundary Layer on a Flat-Plate Using Piezoelectric Bimorph Film

  • Song, Woo-Seog;Lee, Seung-Bae;Shin, Dong-Shin;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1993-2001
    • /
    • 2006
  • The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency $f_b^+$:=0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall- pressure energy spectrum when the 700$700{\nu}/u_{\tau}$-long bimorph film is periodically actuated at the non- dimensional frequency $f_b^+$:=0.008 and 0.028. The biomorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event.

Electrochemical Characteristics of Marine Anti-Corrosive Coating under Shear Flows (전단유동 하에서의 선박용 방식도막의 전기화학 특성)

  • Park, Hyun;Park, Jin-Hwan;Ha, Hyo-Min;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.268-274
    • /
    • 2006
  • Analysis has been made of the anti-corrosive property of organic coating under the shear stress of the flow by means of AC impedance method. Marine anti-corrosive painted panels were placed in the water channel with varying flow rate, thereby experiencing varying flow shear stress on the surfaces. The velocities of the salt water were ranged from 1.48 to 5.2 m/s and the coating thickness of from $70{\mu}m\;to\;140{\mu}m$. For all coating thicknesses investigated, the poorer anti-corrosive property and the lower adhesion strength have been found for the higher shear stress. It has been found that the shear stress accelerates the aging of organic marine coatings.

Development of an Cross Flow Air-Cooled Plate Heat Exchanger (직교류 공랭식 판형열교환기의 성능평가)

  • Kim, Min-Sung;Lee, Jae-Hoon;Park, Seong-Ryong;Ra, Ho-Sang;Jeong, Jae-Hoon;Lim, Hyug
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.235-240
    • /
    • 2007
  • Performance of an air-cooled plate heat exchanger (PHE) was evaluated in this study. The PHE was manufactured in two types of single-wave and double-wave plates in parallel assembly. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, prototype single-wave and double-wave PHEs were designed and tested in a laboratory scale experiments. From the tests, the double-wave PHE shows approximately 50% enhanced heat transfer performance compared to the single-wave PHE. However, the double-wave PHE costs 30% additional pressure drop. For the commercialization, a wide channel design for air flow would be essential for performance and reliability.

  • PDF

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.