• 제목/요약/키워드: Flow behavior model

검색결과 1,114건 처리시간 0.03초

단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가 (ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS)

  • 윤수종;진창용;김민환;박군철
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.

공기흐름을 고려한 수리-역학적 연동모델에 의한 불포화 토사사면의 안정해석 (Stability Analysis of Unsaturated Soil Slope by Coupled Hydro-mechanical Model Considering Air Flow)

  • 조성은
    • 한국지반공학회논문집
    • /
    • 제32권1호
    • /
    • pp.19-33
    • /
    • 2016
  • 강우의 침투가 사면안정에 미치는 영향을 평가하기 위해 강우의 침투해석을 수행하고 그 결과를 한계평형해석에 적용하는 안정해석 절차가 널리 사용되고 있으나 지반은 흙 입자, 물과 공기로 이루어진 3상의 물질이므로 사면을 통한 강우의 침투를 엄밀하게 해석하기 위해서는 물, 공기의 흐름과 흙의 응력-변형거동이 완전 연관된(fully coupled) 식을 고려해야 한다. 본 연구에서는 공기와 물의 흐름이 사면의 역학적 안정에 미치는 영향을 연구하기 위하여 우리나라에 널리 분포하는 풍화잔류토 사면에 대하여 3상이 연동된 흐름해석을 수행하였다. 강우침투가 사면안정에 미치는 영향을 평가하기 위하여 강도감소법에 의한 사면 안정해석을 수행하였다. 해석결과에 의하면 침투하는 강우가 공기를 밀어내 공기의 흐름이 발생하고 공기압이 증가하였다. 이러한 간극에서의 물과 공기의 상호작용은 사면의 응력-변형거동에 영향을 미쳐 공기의 흐름을 고려하지 않은 흙 입자-물의 연관해석의 결과와는 다른 사면안정 거동을 보였다.

FLOW-3D를 이용한 우이천의 홍수특성 분석 (Analysis of the flood Characteristics in the Woo-Ee Stream Using FLOW-3D)

  • 윤선권;문영일;김종석;오근택;이수곤
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.603-607
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze one dimension or two dimension stream flow of domestic rivers that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed three dimensional numerical analysis for correct stream flow interpolation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimension RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-{\backepsilon}$, RNG $k-{\backepsilon}$ and LES. Those numerical analysis results have been illustrated to bends and junctions by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows.

  • PDF

대학생의 자기주도성, 학습몰입, 진로결정효능감과 진로탐색행동 간의 관계 구조분석 (The Analysis on the Causal Model between Self-directedness, Learning Flow, Career Decision and Self-efficacy, and Career Exploration Behavior of Undergraduate Students)

  • 강명숙;방은령
    • 한국심리학회지 : 문화 및 사회문제
    • /
    • 제20권4호
    • /
    • pp.443-467
    • /
    • 2014
  • 본 연구는 대학생을 대상으로 자기주도성, 학습몰입, 진로결정효능감과 진로탐색행동 간의 관계 구조를 검증하고자 하였다. 이를 위하여 남녀 대학생 604명을 대상으로 자기보고식 설문조사를 하였고, 구조방정식을 활용하여 자료를 분석하였다. 본 연구의 주요결과는 다음과 같다. 첫째, 학습몰입과 진로결정효능감은 진로탐색행동에 긍정적인 영향을 미치는 선행변인으로 밝혀졌으나, 자기주도성이 진로탐색행동에 미치는 직접적인 영향은 유의하지 않은 것으로 나타났다. 둘째, 자기주도성은 학습몰입과 진로결정효능감에 긍정적인 영향을 미치는 것으로 나타났다. 셋째, 진로결정효능감과 학습몰입은 자기주도성과 진로탐색행동의 관계를 완전 매개함으로써 자기주도성이 진로탐색행동에 간접적인 영향을 미치는 것으로 나타났다. 특정간접효과(specific indirect effect)의 크기를 검토하였을 때, 자기주도성의 간접효과는 진로결정효능감을 매개하는 경로가 학습몰입을 매개하는 경로보다 진로탐색행동에 미치는 영향력이 더 큰 것으로 밝혀졌다. 이러한 결과를 토대로 대학생의 진로탐색행동을 증진시키기 위한 논의와 후속연구를 위한 제언이 이루어졌다.

  • PDF

3차원 수리 모델을 이용한 영산강 수질오염물질의 수체 내 거동 특성 분석 (Analysis of Behavior Characteristics of Water Pollutants in Yeongsan River Using 3D Hydraulic Model)

  • 오혜연;김은정;최정현
    • 한국물환경학회지
    • /
    • 제39권6호
    • /
    • pp.439-450
    • /
    • 2023
  • The Yeongsan River, a major water resource for Jeollanam-do, that is adjacent to industrial complexes and agricultural areas, is exposed to water pollution. Therefore, it is necessary to investigate the impact of water pollution incidences and prepare response systems for river environment safety for other water resources in the future. Environmental Fluid Dynamics Code (EFDC) was applied to the mainstream of the Yeongsan River where residential, commercial, and agricultural areas are located to analyze the behavior of pollutants conducting the scenario analysis. Considering the pollutants that affected the study area, two pollutants, oil and benzene, with different physical and chemical characteristics were selected for the analysis. As a result of comparing the actual and simulated values of the water elevation, temperature, and flow rate, it was confirmed that the model adequately reproduced the hydraulic characteristics of the Yeongsan River. The oil flow dynamics showed that an increase in flow rate led to reduction in the maximum height of the slick. Notably, the behavior of the oil was predominantly influenced by the wind conditions. In the case of benzene, lower flow scenarios exhibited decreased arrival times and residence times accompanied by an elevation in the maximum concentration levels. From the results of pollutant behavior in the study area, it is feasible to utilize the section of tributary confluence for collection and the weir area for dilution. This study enhances the understanding of the pollutant's behavior with different characteristics and develops effective control systems tailored to the physicochemical attributes of pollutants.

On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function

  • Park, Noma;Yoo, Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1522-1539
    • /
    • 2002
  • In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.

폴리에틸렌옥사이드 수용액의 정상유동 특성 (Steady Shear Flow Properties of Aqueous Poly(Ethylene Oxide) Solutions)

  • 송기원;김태훈;장갑식;안승국;이장우;이치호
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권3호
    • /
    • pp.193-203
    • /
    • 1999
  • In order to investigate systematically the steady shear flow properties of aqueous po1y(ethylene oxide) (PEO) solutions having various molecular weights and concentrations, the steady flow viscosity has been measured with a Rheometrics Fluids Spectrometer (RFS II) over a wide range of shear rates. The effects of shear rate, concentration, and molecular weight on the steady shear flow properties were reported in detail from the experimentally measured data, and then the results were interpreted using the concept of a material characteristic time. In addition, some flow models describing the non-Newtonian behavior (shear-thinning characteristics) of polymeric liquids were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was examined by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) At low shear rates, aqueous PEO solutions show a Newtonian viscous behavior which is independent of shear rate. At shear rate region higher than a critical shear rate, however, they exhibit a shear-thinning behavior, demonstrating a decrease in steady flow viscosity with increasing shear rate. (2) As an increase in concentration and/or molecular weight, the zero-shear viscosity is increased while the Newtonian viscous region becomes narrower. Moreover, the critical shear rate at which the transition from the Newtonian to shear-thinning behavior occurs is decreased, and the shear-thinning nature becomes more remarkable. (3) Aqueous PEO solutions show a Newtonian viscous behavior at shear rate range lower than the inverse value of a characteristic time $1/{\lambda}_E$, while they exhibit a shear-thinning behavior at shear rate range higher than $1/{\lambda}_E$. For aqueous PEO solutions having a broad molecular weight distribution, the inverse value of a characteristic time is not quantitatively equivalent to the critical shear rate, but the power-law relationship holds between the two quantities. (4) The Cross, Carreau, and Carreau-Yasuda models are all applicable to describe the steady flow behavior of aqueous PEO solutions. Among these models, the Carreau-Yasuda model has the best validity.

  • PDF

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

CA모형을 이용한 미시적 교통류 시뮬레이션 시스템 개발에 관한 연구 (A Traffic Flow Micro-simulation System Using Cellular Automata)

  • 조중래;고승영;김진구;김채만
    • 대한교통학회지
    • /
    • 제19권3호
    • /
    • pp.133-144
    • /
    • 2001
  • 본 연구에서는 대규모 네트워크에 적용 가능한 미시적 교통류 시뮬레이션 모형을 개발하였다. 본 연구는 대규모 가로망에 대한 미시적 교통류 시뮬레이션 시스템개발의 첫 번째 단계로, 연속류 구간을 중심으로 우리나라의 가로망 구조, 차량 주행행태에 적합한 미시적 교통류 시뮬레이션 모형개발에 초점을 두었다. 차량 전이 모형으로는 Cellular Automata 모형(CA모형)을 기반으로 하였으며, 기존의 CA모형 중 교통공학적 측면에서 문제가 있다고 판단되는 부분에 대해서는 새로운 모형을 개발하거나 수정하여 적용하였다. 개발된 모형의 모의실험을 통해 기존의 거시적 교통류 시뮬레이션 모형에서 설명할 수 없었던 여러 교통현상(합류, 차로축소, 분류등으로 유발되는 교통현상)을 설명할 수 있는 것으로 확인되었고, 또한 본 모형은 우리나라의 가로망구조에 기반을 두고 개발되었기 때문에 기존에 외국에서 개발된 미시적 시뮬레이션 모형이 표현하지 못했던 가로망에 대한 교통류 시뮬레이션이 가능한 것으로 나타났다.

  • PDF

분류층 가스화기 벽면의 슬래그거동에 대한 비정상해석 모델 개발 (Development of transient-state simulation model for slag flow on the wall of an entrained coal gasifier)

  • 김무경;예인수;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.197-200
    • /
    • 2015
  • Understanding the slag flow behavior is important in an entrained coal gasifier for its influence of ash discharge and wall heat transfer rate. This study presents a new model to predict the transient behavior of the liquid and solid slag layers. Unlike the previous steady-state model, the solid slag layer was included in solving the governing equations in order to identify the temporal and spatial transformation between the solid-liquid slag, rather than treating the solid region as a boundary condition of the liquid layer. The performance of the new model was evaluated for changes in the slag deposition rate (${\pm}10%$) and gas temperature (${\pm}50K$) in a simple cylindrical gasifier. The results show that the characteristic times to reach a new steady-state ranged between 80 s to 180s for the changes in the two parameters. Because the characteristic times of the gasifier temperature and slag deposition rate by changes in the coal type and/or operating conditions would be almost instantaneous, the time-scale for the slag thickness at the bottom of the gasifier to stabilize was much larger.

  • PDF