• Title/Summary/Keyword: Flow attack angle

Search Result 391, Processing Time 0.025 seconds

Unsteady Flow Analysis around an Elliptic Cylinder at Various angles of Attack: Drag and Lift Forces (받음각이 있는 타원형 실린더 주위의 비정상 유동해석: 항력 및 양력 고찰)

  • Park, Young-Bin;Kim, Moon-Sang;Kim, Hark-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.1-8
    • /
    • 2005
  • A parametric study has been accomplished to figure out the effects of the elliptic cylinder thickness, angle of attack, and Reynolds number on the lift and drag forces exerted on the elliptic cylinder. A two-dimensional incompressible Navier-Stokes flow solver is developed using SIMPLER method to analyze the unsteady viscous flow over elliptic cylinder. Thickness-to-chord ratios of 0.2, 0.4, and 0.6 elliptic cylinders are simulated at different Reynolds numbers of 400 and 600, and angles of attack of $10^{\circ}$, $20^{\circ}$, and $30^{\circ}$. Through this study, it is observed that the elliptic cylinder thickness, angle of attack, and Reynolds number affect significantly not only the time-mean values and the amplitudes of the drag and lift forces but also the frequencies of the force oscillations.

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.

A study on the boundary layer characteristics of TP620 hydrofoil in the steady state (정상상태인 박용 TP620 익형의 경계층 특성 연구)

  • 서봉록;김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.50-56
    • /
    • 1986
  • This report deals with a study on the boundary layer characteristics of TP620 hydrofoil in the steady state by using two dimensional boundary layer theory. On the basis of complex velocity and laminar and turbulent boundary layer theory, the author attempts to know some tendency by evaluating the performance characteristic values of TP620 hydrofoil working in a uniform flow. In deriving characteristic values, he calculates numerically velocity, momentum thickness, skin friction coefficient, shape factor, and displacement thickness on the TP620 hydrofoil working at each attack angle in a uniform flow. Applying this present numerical calculation using Thwaites' and Head's method, the results of boundary layer on the hydrofoil are shown to be influenced by surface velocity and attack angle.

  • PDF

Effect of the Gurney Flap on a NACA 23012 Airfoil

  • Yoo, Neung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.1013-1019
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about the airfoil. Fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed that the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. The Gurney flap provided a significant increase in the lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.6% chord size of flap was the best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

Numerical Analysis of Flow- and Heat Transfer of a Spinning Blunt Body at Mach 5 (마하수 5에서 회전하는 blunt body의 유동 및 열전달에 관한 수치해석)

  • Lee Myung Sup;Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.172-177
    • /
    • 2000
  • In this numerical work, three dimensional supersonic laminar flow and heat transfer of a blunt body(sphere-cone) at Mach 5 is simulated. The effects of angle of attack and the spin rate on the now and heat transfer are analysed. To solve the three dimensional compressible Wavier-Stokes equation, a finite volume method with the modified LDFSS scheme is employed for spatial discretization, and a point SGS implicit method is used for time integration. It is found that the heat transfer rate increases at the windward side and decreases at the leeward side with the angle of attack. The heat transfer rate at all surfaces slightly increases with the spin rate.

  • PDF

Effect of the Gurney Flap on NACA 0015 Airfoil (NACA 0015 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo;Lee, Jang-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.71-76
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on NACA 0015 airfoil. A Navier-Stokes code. FLUENT, was used to calculate the flow field about the airfoil. The fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.75% chord size of flap was best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

Computation of aerodynamic coefficients of a re-entry vehicle at Mach 6

  • R.C. Mehta;E. Rathakrishnan
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.457-471
    • /
    • 2023
  • The paper evaluates the aerodynamic coefficients on a blunt-nose re-entry capsule with a conical cross-section followed by a cone-flare body. A computer code is developed to solve three-dimensional compressible inviscid equationsfor flow over a Space Recovery Experiment (SRE) configuration at different flare-cone half-angle at Mach 6 and angle of attack up to 5°, at 1° interval. The surface pressure variation is numerically integrated to obtain the aerodynamic forces and pitching moment. The numerical analysis reveals the influence of flare-cone geometry on the flow characteristics and aerodynamic coefficients. The numerical results agree with wind tunnel results. Increase of cone-flare angle from 25° to 35° results in increase of normal force slope, axial forebody drag, base drag and location of centre of pressure by 62.5%, 56.2% and 33.13%, respectively, from the basic configuration ofthe SRE of 25°.

Study on the Affects of Mounting Axisymmetric Inlet to Airframe

  • Ando, Yohei;Matsuo, Akiko;Kojima, Takayuki;Maru, Yusuke;Sato, Tetsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.699-702
    • /
    • 2004
  • In this study, the affect of mounting axisymmetrical supersonic inlet to airfoil, which has 65 degree swept angle was numerically investigated. The parameter for this calculation are tree stream Mach number M=2.0 and 2.5, the distance between inlet spike and airfoil lower surface $L_{sw}$/$R_{cowl}$ = 1.21-1.54 and angle of attack to the airfoil 0-4. The mass capture ratio improved 3points in M=2.0 condition and 1points in M=2.5 while the mass capture ratio without airfoil surface was 57% and 71 % for each case. These are the result from increase of density and change of velocity deflection by the shock wave structure formed between inlet and airfoil surface. On the other hand, the distortion of Mach number at cowl lip plane increased by 13% in M=2.0, 3% in M=2.5 condition. The effects of the angle attack on the mass capture ratio is greater than that of the shock wave interaction between inlet and cowl, but the effects to the distortion is smaller in the range of this calculation condition. In the condition of M=2.0 with 4 degrees of angle of attack, inlet distortion of Mach number is mainly caused by the affects of the shock wave interaction between inlet and airfoil surface, while the largest angle of the velocity vector in the radial direction at cowl lip plane is caused by the affect of angle of attack. This large velocity vector made the flow inside the cowl subsonic and caused spillage, which interfere with the boundary layer of airfoil surface.

  • PDF

Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence (큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사)

  • Rho Oh Hyun;Hwang Soo Jung
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF