• Title/Summary/Keyword: Flow attack angle

Search Result 391, Processing Time 0.025 seconds

Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows (삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석)

  • Im Y. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

Flow and Aerodynamic Characteristics Analyses of A Commercial Passenger Airplane (상용 여객기의 유동 및 공력 특성 해석)

  • Kim, Yang-Kyun;Kim, Sung-Cho;Kim, Jeong-Soo;Ree, Kee-Man;Jin, Hak-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2857-2861
    • /
    • 2007
  • Flow and aerodynamic characteristics were analyzed numerically for a commercial passenger airplane, Boeing 747-400, flying in the cruising condition. The model geometry with 100:1 in scale was obtained by the photo scanning measurement with the maximum error of 1.4% comparing with the real airplane dimension. The three-dimensional inviscid steady compressible governing equations were solved by the finite volume method in the unstructured grid system. The convective terms were treated by the Crank-Nicholson and first-order upwind schemes. In the computational results, the strong wing-tip vortices were clearly observed and the pressure contours on the airplane surface were suggested. The lift and drag forces in the wing with engines increase by 1.49% and 3.9%, respectively compared with the case without engines. The aerodynamic forces were estimated quantitatively for each element which consists of the airplane.

  • PDF

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

A Development of Wind Tunnel Test System for Synthetic Jet Actuator with Embedded Web Server (임베디드 웹서버를 이용한 Synthetic Jet Actuator의 풍동실험장치 개발)

  • Jung Gyu Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.639-646
    • /
    • 2005
  • As the internet communication is prevalent in recent years, it becomes quite possible to monitor and control some mechanical plants from the remote place through the TCP/IP communication. Such a concept is expected to be applied to many industrial systems fur easy maintenance and trouble shooting as well as various kinds of expensive test equipments fo. sharing. Synthetic jet actuate.(SJA) is a kind of high-lifting device to prevent flow separation at high angle of attack and its use for flow control has received a great amount of attention. In this research, remote control and data monitoring system for SJA wind tunnel test is implemented by TCP/IP communication with DSP as a embedded web server. From the tests performed with embedded server, it showed the possibility of reliable remote control system design utilizing the internet communication.

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.

A Numerical Study on Strut-Placed Supersonic Flow in Annulus Flowfield (스트럿트가 있는 초음속 환형유동장에 대한 수치적 연구)

  • Park Hee Jun;Joo Won Goo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.53-63
    • /
    • 2002
  • In this numerical approach, strut-placed supersonic annular flow is examined. The geometrical variations of strut cause strong influence on flowfield structures. The geometrical variations are as follows, swept effect, attack angle effect, variation of leading edge shape. These changed features such as velocity structure, pressure structure, shock-boundary layer interaction are compared and analyzed according to each geometrical configuration.

  • PDF

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.

The Characteristic Investigation of the Flowfield around Two Circular Cylinders in the Tandem Arrangement Using the PIV (PIV를 이용한 직렬배열에서 2원주 주위의 유동장 특성 연구)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Park, Ji-Tae;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.159-165
    • /
    • 2007
  • The Characteristics of the flowfield around two circular cylinders in tandem arrangement was investigated by PIV. Strouhal numbers. velocity vectors and velocity profiles were observed at centre-to-centre space ratios of P/D= 1.5. 2.0 and 2.5, and Reynolds number of $Re=3.0{\times}10^3{\sim}5.0{\times}10^3$. As the results the Strouhal numbers measured in the rear region of the cylinder of wake side were decreased with the space ratios. The flow between two cylinders was almost stagnated and the size of the stagnated region was larger in the close side than in the far side of the front cylinder. The direction of vortex between two cylinders was opposed each other with the small difference(${\alpha}\;{\pm}1.0^{\circ}$) of the attack angle ${\alpha}$.

UNSTEADY AERODYNAMIC ANALISES OF SPACE ROCKET CONFIGURATION CONSIDERING PITCHING MOTION (피칭운동을 고려한 우주발사체 형상의 천음속 비정상 유동해석)

  • Kim, D.H.;Kim, Y.H.;Kim, D.H.;Yoon, S.H.;Kim, G.S.;Jang, Y.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. Before performing the coupled fluid-structure transonic aeroealstic simulations transonic aerodynamic characteristics are investigated for the pitching motions of the rocket at finite angle-of-attack. An unsteady CFD analysis method with a moving grid technique based on the Reynolds-averaged Navier-Stokes equations with the k-w SST transition turbulence model is applied to accurately predict the transonic loads of the rocket at pitching motion. It is shown that the fluctuating amplitude of the lateral aerodynamic loads imposed on the rocket due to the pitching motion can be significantly increased in the transonic flow region.

COMPARISON OF CFD SIMULATION AND EXPERIMENT OF CAVITATING FLOW PAST AXISYMMETRIC CYLINDER (전산해석과 실험의 비교검증을 통한 원통형 수중운동체 주위의 캐비테이션 유동현상 연구)

  • Park, H.M.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc., Thus, cavitating flow simulation is of practical importance for many engineering systems. In this study, a two-phase flow solver based on the homogeneous mixture model has been developed. The flow characteristics around an axisymmetric cylinder were calculated and then validated by comparing with the experimental results in the cavitation water tunnel at the Korea Ocean Research & Development Institute. The results show that this solver is highly suitable for simulating the cavitating flows. After the code validation, the cavity length with changes of water depth, angle of attack and velocity were obtained.. Cavitation inception was also calculated for various operational conditions.