• 제목/요약/키워드: Flow around a Body

검색결과 306건 처리시간 0.026초

Comparison of several computational turbulence models with full-scale measurements of flow around a building

  • Wright, N.G.;Easom, G.J.
    • Wind and Structures
    • /
    • 제2권4호
    • /
    • pp.305-323
    • /
    • 1999
  • Accurate turbulence modeling is an essential prerequisite for the use of Computational Fluid Dynamics (CFD) in Wind Engineering. At present the most popular turbulence model for general engineering flow problems is the ${\kappa}-{\varepsilon}$ model. Models such as this are based on the isotropic eddy viscosity concept and have well documented shortcomings (Murakami et al. 1993) for flows encountered in Wind Engineering. This paper presents an objective assessment of several available alternative models. The CFD results for the flow around a full-scale (6 m) three-dimensional surface mounted cube in an atmospheric boundary layer are compared with recently obtained data. Cube orientations normal and skewed at $45^{\circ}$ to the incident wind have been analysed at Reynolds at Reynolds number of greater than $10^6$. In addition to turbulence modeling other aspects of the CFD procedure are analysed and their effects are discussed.

선박용 글로브 밸브의 유동특성에 관한 연구 (A Study on the Flow Characteristics inside a Glove Valve for Ships)

  • 배기화;박재현;강상모
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.110-118
    • /
    • 2008
  • It is essential for the valid design of a marine flow-control valve to exactly know its flow characteristics. The present study has numerically investigated the flow characteristics inside a marine throttle-type globe valve using a kind of commercial CFD code, CFX10.0, with an adoption of the SST (Shear-Stress Transport) turbulence model. To validate the numerical approach, the flow coefficients are compared with the experimental ones. Results show that the globe valve is effective in the control of flow rate according to the opening ratio in case of the forward-direction flow, whereas it is effective in the flow shutoff in case of the reverse-direction flow. Around the inlet of the valve, a recirculation region is formed due to the blunt body shape, the turbulence intensity becomes strengthened and then an abrupt pressure loss occurs.

NUMERICAL METHOD IN WAVE-BODY INTERACTIONS

  • MOUSAVIZADEGAN S. H.;RAHMAN M.
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.73-91
    • /
    • 2005
  • The application of Green's function in calculation of flow characteristics around submerged and floating bodies due to a regular wave is presented. It is assumed that the fluid is homogeneous, inviscid and incompressible, the flow is irrotational and all body motions are small. Two methods based on the boundary integral equation method (BIEM) are applied to solve associated problems. The first is a low order panel method with triangular flat patches and uniform distribution of velocity potential on each panel. The second method is a high order panel method in which the kernels of the integral equations are modified to make it nonsingular and amenable to solution by the Gaussian quadrature formula. The calculations are performed on a submerged sphere and some floating spheroids of different aspect ratios. The excellent level of agreement with the analytical solutions shows that the second method is more accurate and reliable.

병렬로 나열된 두개의 원형실린더 주위 층류의 후류 특성 (Characteristics of Laminar Wake Around Two-Circular Cylinder in Side-by-Side Array)

  • 이상범;박종천
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.15-22
    • /
    • 2006
  • A finite-volume method using multi-block grid technique has been developed in order to investigate the flow field around multi-body. Here the matching grids are used at the interface between blocks and the boundary conditions are imposed there to exchange physical values across the interface. For the test problems, the laminar viscous flaw around one-and two-cylinder are simulated and the results are compared with experiments and other numerical results.

원통 주위의 2차원 유동과 구 주위의 3차원 유동해석을 위한 가상경계법 개발 (IMMERSED BOUNDARY METHOD FOR THE ANALYSIS OF 2D FLOW OVER A CYLINDER AND 3D FLOW OVER A SPHERE)

  • 페르난데스;서용권;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.194-199
    • /
    • 2007
  • IB (immersed boundary) method is one of the prominent tool in computational fluid dynamics for the analysis of flows over complex geometries. The IB technique simplyfies the solution procedure by eliminating the requirement of complex body fitted grids and it is also superior in terms of memory requirement. In this study we have developed numerical code (FOTRAN) for the analysis of 2D flow over a cylinder using IB technique. The code is validated by comparing the wake lengths and separation angles given by Guo et. al. We employed fractional-step procedure for solving the Navier-Stokes equations governing the flow and discrete forcing IB technique for imposing boundary conditions. Also we have developed a 3D code for the backward-facing-step flow and flow over a sphere. The reattachment length in backward-facing-step flow was compared with the one given by Nie and Armaly, which has proven the validity of our code.

  • PDF

상대운동을 하는 방제판 주위 물-기름-공기 유동 모사 (SIMULATION OF WATER-OIL-AIR FLOWS AROUND OIL BOOMS UNDER RELATIVE MOTION)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.31-38
    • /
    • 2016
  • The FDS-HCIB method is expanded to simulate water-oil-air flows around oil booms under relative motion, which is intended to increase the thickness of contained oil. The FDS scheme captures discontinuity in the density field and abrupt change of the tangential velocity across an interface without smearing. The HCIB method handles relative motions of thin oil booms with ease. To validate the developed FDS-HCIB code for water-oil-air flow around a moving body, the computed results are compared with the reported experimental results on the shape, length, and thickness of the oil slicks under towing. It is observed that the increase in pressure field between two barriers lifts the oil slick and the interfacial wave propagates and reflects as one barrier gets closer to the other barrier.

유체속에 잠긴 구주위에서의 열 및 유동특성에 관한 연구 (Study on the thermal and flow characteristics around a sphere submerged in the fluid)

  • 박희용;임경빈
    • 대한기계학회논문집
    • /
    • 제5권3호
    • /
    • pp.238-243
    • /
    • 1981
  • An empirical formula for the mass flow rate in natural convection flume above a spherical heated body which is submerged in a finite fluid contained in a tank was determined. The ratio of depth of submergence to diameter of the sphere for which the sphere sensed as infinite medium was found to be bigger than 7. A dimensionless heat transfer correlation for the natural convection from a sphere was determined for Gr.Prq etween 7x10$\^$7/ and 2x10$\^$8/ also.

안정화된 유한요소법을 이용한 진동하는 2차원 물체 주의 유동해석 (A STABILZED FINITE ELEMENT COMPUTATION OF FLOW AROUND OSCILLATING 2D BODIES)

  • 안형택;라술 라힐
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.289-294
    • /
    • 2010
  • Numerical stud of an oscillating body in incompressible fluid is performed. Stabilized finite element method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulations of linear triangular elements was employed to solve 2D incompressible Navier-Stokes equations whereas the motion of the body was considered by incorporating the arbitrary Langrangian-Eulerian(ALE) formulation. An algebraic moving mesh strategy is utilized for obtaining body conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases and then the capability to handle moving boundaries is demonstrated.

  • PDF

전동차 차체 구조물에 대한 구조해석 및 실험에 관한 연구 (A Study on the Structural Analysis and Test of an Electric Car-Body)

  • 전형용;성낙원
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.28-36
    • /
    • 1998
  • This investigation is the result of a structural analysis by the finite element method and static loading test for the optimal structural design of an electric railway vehicle made of stainless 301L materials. We analyzed the stress and displacement of the existing electric car-body structure for predicting the position of concentrated stress, the flow of stress, rigidity to be occurred in the car-body structure when it is subjected to the vertical load. It was exposed that the side sills and window corners around the bolsters are the weak parts of the electric car-body structure because the bolsters of the electric car-body structure were subjected to the vertical load and dynamic load to be occurred during running. The flow of stress and the cause of stress concentration in the weak zone were studied in order to prevent the concentration of stress and buckling. The rearrangement of the structure and the selection of the beam elements were also carried out for optimum design of the structure.

  • PDF

레벨셋법을 이용한 이동 집중격자 생성법에 대한 연구 (A Study on a Moving Adaptive Grid Generation Method Using a Level-set Scheme)

  • 박일룡;전호환
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.18-27
    • /
    • 2002
  • Eulerian개념을 사용한 격자계 내 임의의 경계면 주위 점성유동 해석에서, 운동하며 변형하는 경계면 근방 해의 정도를 향상시키기 위해서 격자생성시 경계면으로 격자점들을 집중시켜주는 레벨셋법에 바탕을 둔 격자변형법을 도입하였다. 본 연구에서는 격자점들을 경계면 근방으로 집중되는 정도를 용이하게 조절할 수 있도록 새로운 형태의 모니터함수를 제시하였다. 집중격자계를 사용함으로 얻어지는 향상된 해의 정도의 검증을 위하여 바닥에 고정된 반원 실린더 주위 정상유동에 대하여 가상경계법을 함께 사용하여 해석하였다. 수치계산결과는 물체적합 격자계를 사용해서 얻은 결과와 매우 잘 일치하였으며, 집중격자법을 사용하지 않은 해석결과보다 향상된 결과를 보여주었다. 수치계산의 또 다른 예제로서 다수의 고정된 물체주위 유동해석으로 확장 적용하여 공학적 유용성을 검증하였다. 마지막으로 이동 집중격자계의 생성법의 적용을 위해서 움직이면서 변형을 일으키는 2차원 기포상승문제를 해석하였다. 수치해석결과에서 격자점들은 매시간 기포의 변형에 맞추어 적합하게 집중된 형태를 잘 보여주었으며, 고정된 격자계를 사용한 결과와 잘 일치하였다.