• 제목/요약/키워드: Flow area

검색결과 5,140건 처리시간 0.033초

차 개구형상이 엔진룸내 유동에 미치는 영향에 관한 수치연구 (The Numerical Study of the Effect of Car Front Opening Area on the mean Flow in Engine Room)

  • 류명석;이은준;구영곤
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.158-165
    • /
    • 1996
  • The knowledge of air flow in an engine room has become more and more important in recent car design. The fluid flow in the engine compartment was investigated by numerical analysis. Due to the complex geometry of the engine compartment, mesh generation is a time-consuming job. In this research, the "ICEM" code was used to generate meshes by the Cartesian mesh model. The Reynolds-averaged Navier Stokes equations, together with the porous flow model for radiator and condenser, were solved. Computation was performed for the steady, incompressible, and high speed viscous flow, adopting the standard K-ε turbulence model. The "STAR-CD" code was used as a solver. The effect of car front openning area on the flow in engine room was also investigated.

  • PDF

담수호 저층배수시설 방류구 위치선정을 위한 저층방류수 해양수중 혼합특성해석

  • 박영욱;구본충;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.272-277
    • /
    • 2005
  • Initial mixing characteristics in near field regions were analyzed by FLOW-3D, for analyzing mixing behavior of submerged discharge from freshwater lake in sea water. FLOW-3D model was applied to the region near Geum-ho dike for its verification. Simulation results from FLOW-3D were compared to the observed data for the verification periods. FLOW-3D showed resonable prediction results compared to the observed data, except underestimation in area near outfall. Particularly, FLOW-3D showed a good prediction for movement of buoyancy jets. In addition, FLOW-3D model was applied to the region near Saemangeum dike, which is to be constructed in near future. It was expected that the results of model application to Saemangeum area could provide substantial information in planning submerged discharge facilities. Based on the model applications to Saemangeum area, it was recommended that outfall should be located to the distance which gave an enough depth of outfall from water surface.

  • PDF

경사진 산림지형에서의 자연유동에 대한 수치해석 (Numerical Simulation of the Flow Patterns with Sloping Forest Canopies)

  • 윤현기;;유기수;정명균
    • 대한기계학회논문집B
    • /
    • 제32권3호
    • /
    • pp.173-180
    • /
    • 2008
  • Diurnal variation of the flow over a forest canopy on a mountain slope is simulated numerically. In the daytime, the earth surface is heated by the solar radiation and the flow goes up the mountain due to the buoyancy force, and during the night, the air is drained downward along the slope owing to the cooling of the surface by radiation. In this flow process the forest canopy that consists of leaf region and the trunk region plays a dominant role as a momentum sink to the flow, thus the modeling of the leaf area region and trunk region is critical to the successful flow simulation. In the present study, a field measurement in an experimental forest in the State of Oregon in the United States is numerically analyzed. The resistance to the flow in the leaf region is directly related to the leaf area density (LAD), and the trunk is modeled as a cylinder.

급속삽입법을 이용한 연료 유량에 따른 동축류 확산화염에서의 온도 측정에 관한 연구 (A Study on the Co-flow Diffusion Flame Temperature Measurement at Various Fuel Flows Rate Using the Rapid Insertion Technique)

  • 한용택;이기형
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.51-59
    • /
    • 2005
  • Co-flow laminar diffusion flames' temperature has been studied experimentally for ethylene$(C_2H_4)$ using a co-flow burner in order to investigate the characteristics of diffusion flame's temperature distribution. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple. The measurement area was divided into three zones. 1st area was expect to created PAH zone, Il nd area was expect to form soot zone, which is known to generate most soot volume fraction, and III rd area was expect to from soot oxidization zone. Also The temperature along the flame y-axis as a fuel quantity was measured. As a results, we have measured temperature neglecting the effect of soot particles attached to the thermocouple junction, which is close to the nozzle and upstream zone has a unstable flow in co-flow diffusion flame and acquires that the flame y-axis temperature has a uniform temperature in the generated soot volume fraction zone(II nd).

유량분배 매니폴드의 유출유동에 대한 출구형상 영향 해석 (EFFECT OF EXIT SHAPE ON TURBULENT OUTFLOWS IN A DISTRIBUTION MANIFOLD)

  • 이준우;박태선
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.73-79
    • /
    • 2014
  • Three-dimensional turbulent flows of a distribution manifold are studied by a turbulence model. To investigate the geometrical effects of the manifold, the length and area of exit port are changed. From the results, flow structures related to the outflow uniformity are examined and the deparure angles are obtained. The exit configuration depending on the departure angle has advantages to the outflow uniformity. That is, the decreased exit area in the streamwise direction improves the uniformity of exit flow. For the uniform effusion, the change of exit port by departure angle is more effective them the change of exit area.

유체력을 이용한 직동식 비례 유량 조절 밸브에 관한 연구 (A Study on a Direct-Type Proportional Flow Control Valve Utilizing Flowforces)

  • 배상기;현장환;이정오
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.68-75
    • /
    • 1998
  • A one-stage direction and flow control valve was studied theoretically and experimentally. A direction and flow control valve maintains a constant flow rate by changing the spool-orifice area under the variation of valve pressure drop, since the spool-orifice area is varied by the action of flowforces on the spool. A direction and flow control valve has the advantage of simple and low-cost structure compared to a conventional flow control valve utilizing a pressure regulating spool which regulates the pressure drop caused by flow through the metering orifice. The static and dynamic characteristics of a one-stage direction and flow control valve was analyzed. Experimental results on the flow control characteristics of the manufactured valve show satisfactory agreement with simulation results.

  • PDF

경사진 가열 평판을 흐르는 리뷸릿 유동의 열전달 특성에 관한 실험적 연구 (An experimental Study of Heat Transfer of Rivulet Flow over an Inclined, Heated Surface)

  • 강치석;강병하
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.156-161
    • /
    • 2006
  • The rivulet is a narrow stream of liquid flowing down a solid surface. Heat transfer of rivulet flow over on inclined heated surface has been investigated experimentally. This problem is of particular interest in the understanding of fundamental mechanism on rivulet heat transfer as well as in the design of a regenerative evaporative cooler. The rivulet is seem to be meandering flow, single wide flat flow. and film flow as rivulet flow rate is increased. Even though the wetted surface area is increased with an increase in the rivulet flow rate, the absorbed heat transfer of rivulet flow from a heated surface strongly depends on the flow pattern of rivulet.

  • PDF

원자로배수탱크내 Sparger에 대한 유동특성 및 최적설계 (Flow Characteristics and Optimal Design for RDT Sparger)

  • 김광추;박만홍;박경식;이종원
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1390-1398
    • /
    • 1999
  • A numerical analysis for ROT sparger of PWR(Pressurized Water Reactor) is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K=3.53 at the present design condition if engineering mar&in is considered with 20%, and flow ratio into branch pipe is $Q_s/Q_i=0.41$. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and section area ratio of branch pipe for main pipe, flow resistance coefficient is increased as $Q_s/Q_i$ decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as $Q_s/Q_i$ decreasing. As the change rate of $Q_s/Q_i$ is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is $D_s/D_i=0.333$, the section area ratio is $A_s/A_i=0.2$ and the branch angle is ${\alpha}=55^{\circ}$.

기상 조건과 매립 조건이 비산 먼지 발생에 미치는 영향 (Effects of Meteorological and Reclaiming Conditions on the Reduction of Suspended Particles)

  • 최재원;이영수;김재진
    • 한국환경과학회지
    • /
    • 제19권11호
    • /
    • pp.1423-1436
    • /
    • 2010
  • The effects of meteorological and reclaiming conditions on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the k-$\varepsilon$ turbulence closure scheme based on the renormalization group (RNG) theory. Twelve numerical experiments with different meteorological and reclaiming conditions are performed. For identifying the meteorological characteristics of the target area and providing the inflow conditions of the CFD model, the observed data from the automatic weather station (AWS) near the target area is analyzed. Complicated flow patterns such as flow distortion, horse-shoe vortex, recirculation zone, and channeling flow appeared due to the topography and buildings in the domain. Specially, the flow characteristics around the reclamation area are affected by the reclaiming height, reclaiming size and windbreak height. Reclaiming height affected the wind speed above the reclaiming area. Windbreak induces more complicated flow patterns around the reclaiming area as well as within the reclaiming area. In front of the windbreak, flow is distorted as it impinges on the windbreak. As a result, upward flow is generated there. Behind the windbreak, a secondary circulation, so called, a recirculation zone is generated and flow is reattached at the end of the recirculation zone (reattachment point). At the lower part of the recirculation zone, there is a reverse flow toward the windbreak. Flow passing to the reattachment point starts to be recovered. Total amounts of suspended particles are calculated using the frictional and threshold frictional velocities, erosion potential function, and the number of surface disturbance. In the case of a 10 m-reclaiming and northerly wind, the amount of suspended particles is largest. In the presence of 5 m windbreak, the friction velocity above the reclaiming area is largely reduced. As a result, the total amount of the suspended particles largely decreases, compared to the case with the same reclaiming and meteorological conditions except for the windbreak The calculated suspended particle amounts are used as the emission rate of the dispersion model simulations and the dispersion characteristics of the suspended particles are analyzed.

국립공원 지역에 있어서 토석류 재해의 특성 분석 (Characteristics Analysis of Debris Flow Disaster in Korean National Parks)

  • 마호섭;정원옥
    • 한국환경복원기술학회지
    • /
    • 제13권4호
    • /
    • pp.52-64
    • /
    • 2010
  • This study was carried out to analyze the occurrence characteristics and the influence of forest environment factors on the debris flow of 3 national parks in korea. The results obtained from this study were summarized as follows; The total number of debris flow occurrence was 125 areas. The average length of the debris flow scar was 144m, average width was 20m. And the average area and sediment were $2,854m^2$ and $3,959m^3$ respectively. The factors influencing the debris flow were highly occurred in Metamorphic rock, mixed forest type. And also, slope gradient was $30{\sim}35^{\circ}$, aspect was NE, altitude was over 1,000m, vertical and cross slope was concave (凹), soil depth was below 15cm, stream order was 0 order. The variables of cross slope (complex), deciduous tree, soil depth (over 46cm), cross slope (concave), mixed forest type and altitude (801~1200m) in correlation analysis were significant at 1 % level. The landslide of high mountain area highly tend to change the debris flow in stream bed of torrent. The debris flow in national parks mainly occurred in high mountain area with long ridge and steep slope.