• 제목/요약/키워드: Flow and Structural Analysis

검색결과 780건 처리시간 0.034초

A Structural Analysis on the Leaflet Motion Induced by the Blood Flow for Design of a Bileaflet Mechanical Heart Valve Prosthesis

  • Kwon, Young-Joo;Kim, Chang-Nyung;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1316-1323
    • /
    • 2003
  • This paper presents a structural analysis on the rigid and deformed motion of the leaflet induced by the blood flow required in the design of a bileaflet mechanical heart valve (MHV) prosthesis. In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis on the deformed motion of the leaflet are required sequentially and simultaneously. Fluid forces computed in the previous hemodynamics analysis on the blood flow are used in the kinetodynamics analysis on the rigid body motion of the leaflet. Thereafter, the structural mechanics analysis on the deformed motion of the leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet thickness becomes smaller than 0.6 mm.

Thickness Effect on the Structural Durability of a Bileaflet Mechanical Heart Valve

  • Kwon, Young-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.5-12
    • /
    • 2003
  • This paper discusses about the thickness effects on the structural durability of a bileaflet mechanical heart valve (MHV). In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis for the deformed leaflet are required sequentially and simultaneously. Fluid forces computed in the fluid mechanics analysis on the blood flow are used in the kinetodynamics analysis for the leaflet motion. Thereafter, the structural mechanics analysis for the deformed leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet becomes thinner and thinner.

터널 굴착기 유압시스템용 유량 제어 블록 개발 (Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine)

  • 이재동;임상진
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

기계식 인공심장판막의 경량화 구조설계를 위한 혈액유동과 상호작용하는 판막거동의 구조역학적 특성연구 (Structural Analysis on the Leaflet Motion Interacted with Blood Flow for Thickness Minimization Design of a Bileaflet Mechanical Heart Valve)

  • 권영주;방혜철;김창녕
    • 한국CDE학회논문집
    • /
    • 제6권1호
    • /
    • pp.59-68
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, fluid analysis is performed for the blood flow through a bileaflet mechanical heart valve. Simultaneously the kinetodynamic analysis is carried out to obtain the appropriate structural condition for the structural analysis. Thereafter the structural static analysis is also carried out to confirm the thickness minimization structural condition(minimum thickness shape of leaflet).

  • PDF

기계식 인공심장판막의 경량화 설계를 위한 구조해석 (Structural Analysis for Thickness Minimization Design of a Bileaflet Mechanical Heart)

  • 권영주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, structural analysis is performed for the blood flow through a bileaflet mechanical heart valve. The structural static analysis is carried out to confirm the thickness minimization structural condition (minimum thickness shape of leaflet).

  • PDF

3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석 (Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method)

  • 김성희;홍석윤;길현권;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

하나로 유동모의 설비의 유체순환계통 해석 (The Analysis of Flow Circulation System for HANARO Flow Simulated Test Facility)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.419-424
    • /
    • 2002
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality In February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulation facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The flow circulation system is composed of a circulation pump, a core flow pipe, a core bypass flow pipe and instruments. The system is to be filled with de-mineralized water and the flow should be met the design flow to simulate similar flow characteristics in the core channel of the half-core test facility to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the system. The computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with standard k-$\epsilon$ turbulence model and for the verification of the structural piping integrity through the finite element method. The results of the analysis are satisfied the design requirements and structural piping integrity of flow circulation system.

  • PDF

하나로 유동 모의 설비의 유체순환계통 해석 (The Analysis for Flow Circulation System in HANARO Flow Simulation Facility)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.30-35
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. HANARO flow simulation facility is being developed for the endurance test of reactivity control units for extended life time and the verification of structural integrity of those experimental equipments prior to loading in the HANARO. This facility is composed of three major parts; a half-core structure assembly, a flow circulation system and a support system. The flow circulation system is composed of a circulation pump, a core flow piping, a core bypass flow piping and instruments. The system is to be filled with de-mineralized water and the flow should be met the design requirements to simulate a similar flow characteristics in the core channel of the half-core structure assembly to the HANARO. This paper, therefore, presents an analytical analysis to study the flow behavior of the system. Computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with the standard $k-{\epsilon}$ turbulence model and for the verification of the structural piping integrity through the finite element method. According to the analysis results, it could be said that the design requirements and the structural piping integrity of the flow circulation system are satisfied.

중학생의 자기효능감, 자기주도학습, 학교적응과 학습몰입 간의 관계 분석 (Structural Relationship among the Self-Efficacy, Self-Directed Learning Ability, School Adjustment, and Leaning Flow in Middle School Students)

  • 강승희
    • 수산해양교육연구
    • /
    • 제24권6호
    • /
    • pp.935-949
    • /
    • 2012
  • The purpose of this study was to investigate the structural relationship among the self-efficacy, self-directed learning ability, school adjustment and learning flow in middle school students by the structural equation modeling analysis. The subjects of this study consisted of 553 middle school students. The data were analyzed with descriptive statistics, Pearson correlations and structural equation modeling analysis by using the SPSS 12.0 and AMOS 5.0 statistical program. The results of this study were as followed: First, there were significant correlations among the self-efficacy, self-directed learning ability, school adjustment and learning flow. Second, the self-directed learning ability and school adjustment directly affected the learning flow. Third, self-efficacy and school adjustment variables indirectly affected learning flow. The indices of the best fit model on these variable were adequate. This study shows that the self-efficacy, self-directed learning ability, school adjustment are the significant predictor for the learning flow during adolescent.

구조 비전형성 및 충격파 간섭효과를 고려한 미사일 날개의 천음속 유체유발 진동특성 (Characteristics of Transonic Flow-Induced Vibration for a Missile Wing Considering Structural Nonlinearity and Shock Inference Effects)

  • 김동현;이인;김승호;김태연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.914-920
    • /
    • 2002
  • Nonlinear flow-induced vibration characteristics of a generic missile wing (or control surface) are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are considered in the transonic flow region. To practically consider the effects of freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on a finite element method (FEM). A computational fluid dynamics (CFD) technique is used for computing the nonlinear unsteady aerodynamics of all-movable wings. The aerodynamic analysis is based on the efficient transonic small-disturbance aerodynamic equations of motion using the potential-flow theory. To solve the nonlinear aeroelastic governing equations including the freeplay effect, a modal-based computational structural dynamic (CSD) analysis technique based on fictitious mass method (FMM) is used in time-domain. In addition, CSD and unsteady CFD techniques are simultaneously coupled to give accurate computational results. Various aeroelastic computations have been performed for a generic missile wing model. Linear and nonlinear aeroelastic computations have been conducted and the characteristics of flow-induced vibration are introduced.

  • PDF