• Title/Summary/Keyword: Flow analyses

Search Result 1,483, Processing Time 0.027 seconds

Flow Analyses for the Uniform Distribution of Propellants at Manifolds of a Full-scale Gas Generator (가스발생기 연료 및 산화제 매니폴드 유동해석을 통한 유량균일성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1140-1147
    • /
    • 2009
  • Flow analyses have been performed to investigate the uniformity of propellant flow through the fuel and oxidizer manifolds of a full-scaled gas generator for a pump-fed liquid rocket engines. Injectors were simulated as porous medium layers having equivalent pressure drops. The uniformity of propellants has been analyzed for 3 fuel rings and 3 injector head configurations. The mixture ratio distribution at the exit of injectors has been estimated from the mass flow rates of fuel and oxidizer. The best configuration of fuel ring and injection head was selected through these flow analyses.

Efficient Construction of Over-approximated CFG on Esterel (Esterel에서 근사-제어 흐름그래프의 효율적인 생성)

  • Kim, Chul-Joo;Yun, Jeong-Han;Seo, Sun-Ae;Choe, Kwang-Moo;Han, Tai-Sook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.876-880
    • /
    • 2009
  • A control flow graph(CFG) is an essential data structure for program analyses based on graph theory or control-/data- flow analyses. Esterel is an imperative synchronous language and its synchronous parallelism makes it difficult to construct a CFG of an Esterel program. In this work, we present a method to construct over-approximated CFGs for Esterel. Our method is very intuitive and generated CFGs include not only exposed paths but also invisible ones. Though the CFGs may contain some inexecutable paths due to complex combinations of parallelism and exception handling, they are very useful for other program analyses.

Coupled flow-structure Analyses on the Roots Type Vacuum Pumps in Semiconductor Fabrication Facility (반도체 생산설비 루츠형 진공펌프 계통에 대한 유동-구조 연성해석)

  • Lee, Chan;Kil, Hyun Gwon;Kim, Gang Chun;Kim, Jun Gon;Sim, Jae Up;Yoon, Il Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.10-14
    • /
    • 2013
  • The present study conducts CFD analyses on the internal flow fields of roots type vacuum pumps of semiconductor fabrication facility, and the computed CFD results for internal pressure and temperature distributions are applied to structural analyses of the pumps. The coupled analysis results between flow and structure show that the deformation of pump structure is mainly resulted from the thermal expansion of gas in pump, and the deformed impeller and housing produce their severe contact and impact phenomena causing mechanical damage and fracture.

Analyses of Debris Flow by Heavy Rainfall of Sangnamri of Injegun in 2009 (2009년 집중호우에 의한 인제군 상남리 토석류 현장 분석)

  • Choi, Joon-Sik;Kwak, Cheol-Soo;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.883-890
    • /
    • 2010
  • This study is a research results about flow characteristics of debris flow mobilized from landslides such as initiation, transportation and deposition. As results of slope stability analyses at sites studied, the safety factors in rainy period are decreased drastically in comparisons with those in dry period so that the effect of rainfall on initiation of debris flow is known to be significant. From results of analyzing rainfall data, debris flow occurred as previous rainfall accumulated during 2 weeks was more than 526mm, the maximum rainfall intensity being more than 34mm/hr and the day rainfall being more than 171mm/day. As results of analyzing topology of channel debris flow running, the angle of slope where debris flow initiated was in the range of $36{\sim}39^{\circ}$. For area of channel debris flow being transporting the angle of channel was in the range of $11{\sim}36^{\circ}$. The angle of channel where debris flow started to be deposited was found to be in the range of $5{\sim}10^{\circ}$.

  • PDF

SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS (비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석)

  • Kim Dong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

Numerical analyses on the Aerodynamic Characteristics of a Counter-rotating Axial Flow Fan (고성능 엇회전식 축류팬의 공력특성에 대한 전산해석)

  • Cho, Leesang;Cho, Jinsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.37-40
    • /
    • 2015
  • Numerical analyses on the aerodynamic characteristics of a counter rotating axial flow fan is carried out using the frequency domain panel method. Front rotor and rear rotor blades of a counter rotating axial fan are designed by using the simplified meridional flow analysis method with the radial equilibrium equation and the free vortex design condition, according to design requirements. Performance characteristics of a counter rotating axial flow fan are estimated for the variation of design parameters such as the hub to tip ratio, the taper ratio and the solidity. Pressure losses were higher at leading edge and hub region of rotor blades. Characteristic curve of the counter rotating fan was overpredicted without consideration of viscous effect.

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

Relationship Between Local Wall Thinning and Velocity Components of Deflected Turbulent Flow Inside the Tee Sections of Carbon Steel Piping (탄소강 배관 티에서 편향 난류유동에 따른 속도성분과 국부감육의 상관관계)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kang, Deok-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The aim of this study is to identify the locations at which local wall thinning occurs and to determine the turbulence coefficients related to local wall thinning. Experiments and numerical analyses of the tee sections of different down-scaled piping components were performed and the results were compared. Numerical analyses of full-scale models of actual plants were performed in order to simulate the flow behaviors inside the piping components. In order to determine the relationship between the turbulence coefficients and the rate of local wall thinning, numerical analyses of the tee components in the main feedwater systems were performed. The turbulence coefficients obtained from the numerical analyses were compared with the local wear rate obtained from the measurement data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

The Study on Cavity Flow in Supersonic flow field (초음속 유동장에 놓인 공동 유동에 대한 연구)

  • Yoon Y. H.;Hong S. K.;Kwon K. B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.139-143
    • /
    • 2003
  • In this study the numerical analyses on cavity flow in supersonic flow field are conducted. According to the length-to-depth ratio of cavity, the shear layer is changed, consequently influencing on vortex structure inside the cavity. Especially in case the fluid flow outside cavity impinges inside the cavity, the oscillation of the cavity flow is identified. Another result is that though the cavity flow shows the unsteadiness, characteristics of cavity flow can be represented by pressure coefficients converged.

  • PDF

Hydrodynamic Masses of HANARO Flow Tubes (하나로 유동관의 동적유체질량)

  • 류정수;김두기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.413-422
    • /
    • 2001
  • In this study, the effect of hydrodynamic masses is investigated in the dynamic characteristics and earthquake response analyses of the submerged HANARO flow tubes. First, the consistent hydrodynamic masses of the surrounding water are obtained by finite element method. Then, modal analyses and response spectrum analyses are performed and verified by comparing the results with those measured from an experiment. Arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered by using the general benefits of a finite element method comparing with the conventional analytical methods. Practical criteria based on parametric studies are proposed to evaluate the dynamic characteristics of HANARO flow tubes including the hydrodynamic masses.

  • PDF