• Title/Summary/Keyword: Flow Softening

Search Result 89, Processing Time 0.021 seconds

An Overstress Model for Non-proportional Loading of Nylon 66 (Nylon 66의 무비례 하중에 대한 과응력 모델)

  • Ho, Gwang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.

Prediction on Flow Stress Curves and Microstructures of 304 Stainless Steel (304 스테인레스강의 고온 유동응력곡선과 미세조직의 예측)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.171-175
    • /
    • 1999
  • the high temperature deformation behavior of 304 stainless steel was characterized by the hot torsion test. Continuous deformation was carried out at the temperature ranges 900-110$0^{\circ}C$ and the strain rate ranges 5x10-2~5/sec. The formulation of the flow stress curves was developed as subtraction form which was based on dynamic softening mechanisms The volume fraction of dynamic recrystallization and the mean grain size could be expressed as a function of deformation variables temperature (T) strain ($\varepsilon$) strain rate ($\varepsilon$) The calculated values of flow stress and mean grain size could be well matched with experimental values.

  • PDF

Deformation Behaviour of Ti-8Ta-3Nb During Hot Forging

  • Lee Kyung Won;Ban Jae Sam;Kim Sun Jin;Cho Kyu Zong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Ti-8Ta-3Nb, as a new biomaterial, was prepared by cast and swaging process. Their deformation behavior of Ti-8Ta-3Nb alloy has been characterized on the basis of its flow stress variation obtained from the true strain rate compression testing in the temperature of $700-900^{\circ}C$ and strain rate of $0.001-10\;s^{-1}$. At the strain rates lower than $0.1\;s^{-1}$ and the all temperature ranges which consist of two phase ${\alpha}+{\beta}$ as well as single ${\beta}$ phase fields, the flow curves show a small degree of flow softening behavior. In contrast, the shapes of the flow curves at other strain rates indicate unstable behavior. The shapes of the flow curves were similar in both as-cast and swaged specimen as well as in both ${\alpha}+{\beta}$ phase and ${\beta}$ phase. The flow stress data did not obey the kinetic rate equation over the entire regime of testing but a good fit has been obtained in the intermediate range of temperatures ($750-850^{\circ}C$). In this range, a stress exponent value of about 7.7 in as-cast specimens and about 6.2 in swaged specimens with an apparent activation energy of about 300 kJ/mol and about 206 kJ/mol respectively have been evaluated.

Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil (납사 크래킹 잔사유로부터 용융전기방사용 핏치 제조)

  • Kim, Jinhoon;Lee, Sung Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.402-406
    • /
    • 2013
  • In this study, a pitch for melt-electrospinning was prepared from naphtha cracking bottom (NCB) oil by the modification with heat treatment. The softening point and property of the modified pitch was influenced by modification conditions such as nitrogen flow rate, heat treatment temperature, and reaction time. Among these, the heat treatment temperature had a very strong influence on the distribution of molecular weight and softening point of the pitch. The C/H mole ratio and average molecular weight increased with increasing the heat treatment temperature due the decomposition and cyclization reaction of surface-functional groups. In addition, the values of benzene insoluble and quinoline insoluble also tends to decrease, and the width of molecular weight distribution seems to get more narrow. The carbon fiber with a diameter of $4.8{\mu}m$ was prepared from a modified pitch at the softening point of $155^{\circ}C$ by melt-electrospinning. It is believed that the melt-electro spinning method is much more convenient to get the thinner fiber than the conventional melt spinning method.

Fundamental Study on Development of Sealants used for WIM Sensor Installation (WIM 센서 설치에 적합한 실런트 개발을 위한 기초적인 연구)

  • Lim, Chisoo;Kim, Du-Byung;Kim, Yongjoo;Lee, Kanghun;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • PURPOSES : This study aims to develop a sealant for use in the installation of Weigh-In-Motion (WIM) sensor for asphalt concrete or cement concrete pavements. METHODS : In order to investigate the properties of various sealants that were mixed with latex and carbon fiber, various test methods were adopted, such as bituminous bond strength test, softening point test, and cone penetration test. To evaluate moisture susceptibility, the BBS test was conducted under moist condition. The bond strength ratio (BSR) was calculated based on tensile strength ratio method. RESULTS : The sealant's properties significantly varied according to the amount of latex or carbon fiber. The usage of latex marginally enhanced the cone penetration test result, notwithstanding reduced asphalt content. This implies that the sealant will be proper cold temperature reason. Moreover, the addition of latex and carbon fiber evidently increased the softening point. This indicates that the tendency of the material to flow at elevated temperatures is encountered during service. With the addition of latex and carbon fiber, the moisture susceptibility measured with BSR improved marginally, while the bond strength under dry condition decreased marginally. Sealant F displays the highest bond strength and BSR under limited test conditions. CONCLUSIONS : According to the proportion of latex and carbon fiber mixed, properties of sealant, such as softening point, cone penetration, and BSR varied marginally. This indicates that the sealant has to be applied considering the environmental condition, to improve service life.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Torsion strength of single-box multi-cell concrete box girder subjected to combined action of shear and torsion

  • Wang, Qian;Qiu, Wenliang;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.953-964
    • /
    • 2015
  • A model has been proposed that can predict the ultimate torsional strength of single-box multi-cell reinforced concrete box girder under combined loading of bending, shear and torsion. Compared with the single-cell box girder, this model takes the influence of inner webs on the distribution of shear flow into account. According to the softening truss theory and thin walled tube theory, a failure criterion is presented and a ultimate torsional strength calculating procedure is established for single-box multi-cell reinforced concrete box girder under combined actions, which considers the effect of tensile stress among the concrete cracks, Mohr stress compatibility and the softened constitutive law of concrete. In this paper the computer program is also compiled to speed up the calculation. The model has been validated by comparing the predicted and experimental members loaded under torsion combined with different ratios of bending and shear. The theoretical torsional strength was in good agreement with the experimental results.

A simple prediction procedure of strain-softening surrounding rock for a circular opening

  • Wang, Feng;Zou, Jin-Feng
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.619-626
    • /
    • 2018
  • A simple prediction procedure was investigated for calculating the stresses and displacements of a circular opening. Unlike existed approaches, the proposed approach starts each step with a radius increment. The stress for each annulus could be obtained analytically, while strain increments for each step can be determinate numerically from the compatility equation by finite difference approximation, flow rule and Hooke's law. In the successive manner, the distributions of stresses and displacements could be found. It should be noted that the finial radial stress and displacement were equal to the internal supporting pressure and deformation at the tunnel wall, respectively. By assuming different plastic radii, GRC and the evolution curve of plastic radii and internal supporting pressures could be obtained conveniently. Then the real plastic radius can be calculated by using linear interpolation in the evolution curve. Some numerical and engineering examples were performed to demonstrate the accuracy and validity for the proposed procedure. The comparisons results show that the proposed procedure was faster than that in Lee and Pietrucszczak (2008). The influence of annulus number and dilation on the accuracy of solutions was also investigated. Results show that the larger the annulus number was, the more accurate the solutions were. Solutions in Park et al. (2008) were significantly influenced by dilation.

Rot Deformation Behavior of AISI 316 Stainless Steel (AISI 316 스테인리스강의 고온 변형특성에 관한 연구)

  • Kim S. I.;Yoo Y. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.293-296
    • /
    • 2001
  • The dynamic softening mechanisms of AISI 316, AISI 304 and AISI 430 stainless steels were studied with torsion test in the temperature range of $900 - 1200^{\circ}C$ and the strain rate range of $5.0x10^{-2}-5.0x10^0/sec$. The austenitic stainless steels, such as AISI 316 and AISI 304 were softened by dynamic recrystallization (DRX) during hot deformation. Also, the evolutions of flow stress and microstructure of AISI 430 ferritic stainless steel show the characteristics of continuous dynamic recrystallization (CDRX). To establish the quantitative equations for DRX of AISI 316 stainless steel, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate (${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}={\theta}$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\varepsilon$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\epsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction the ${\varepsilon}_c,\;{\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. It was found that the calculated results were agreed with the experimental data for the steels at my deformation conditions. Also, we can reasonably conclude that the DRX, CDRX and grain refinement of stainless steels can be achieved by large strain deformation at high Z parameter condition.

  • PDF

High Temperature Deformation Behavior of Ti-Al Intermetallic Compound - Microstructure Effect (TiAl 금속간 화합물의 미세조직에 따른 고온변형특성)

  • 하태권;정재영;이광석;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.295-298
    • /
    • 2003
  • High temperature deformation behavior of a Ti-Al intermetallic compound has been investigated. Specimens with a near gamma and a lamella structures were obtained by performing heat treatment at 1200 and 1330$^{\circ}C$, respectively, for 24 hr and stabilized at 900$^{\circ}C$ for 4 hr followed by air cooling. A series of load relaxation tests has been conducted on these samples at temperatures ranging from 850 to 950$^{\circ}C$ to construct flow curves in the strain rate range from 10$\^$-6//s to 10$\^$-3//s. Strain hardening was observed even at the temperature of 950$^{\circ}C$ in both the near gamma and the lamella structures. Further aging treatment for 12 hr at test temperatures has found to cause no softening in both microstructures.

  • PDF