• Title/Summary/Keyword: Flow Simulation

Search Result 7,404, Processing Time 0.032 seconds

The Measuring Method of Web-Site Flow and Its Simulation Analysis (웹 사이트 플로우(Flow) 측정 방법론 및 시뮬레이션에 대한 연구)

  • Kwon, Soon-Jae
    • Knowledge Management Research
    • /
    • v.10 no.2
    • /
    • pp.49-63
    • /
    • 2009
  • In this study, sub domain of flow was investigated on literature survey, and suggested of the measuring method of web-site flow and its simulation analysis. Constructing of measuring method of flow, and using this method what-if analysis was simulated when several condition changed. Using causal map approach to extract knowledge from web-site domain experts and to derives a causal relationship of knowledge. Specially, in our study, describes method of developing and building causal map, and suggests guide line of this method on practical application. This research results show that web-site flow starts "direct searching" or "interesting of special issue(domain)", and when challenges of web-site were accorded with user's skills web-site flow grows. Further, in the web-site, information searching intention results in increase of user's duration time and experience flow to discovery new interesting issues in this process. If user's web-site of interaction is increased, awareness of environment conditions decreased, finally, user's telepresense results in increased web-site flow. This paper contained thai this method make used of measuring flow in the web-site and developing of practical strategy.

  • PDF

Development of GIS-based Debris Flow Simulation Program (GIS 기반의 토석류 시뮬레이션 프로그램 개발)

  • Wie, Gwang-Jae;Lee, Young-Kyun;Lee, Dong-Ha;Suh, Yong-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • This study describes a development of GIS-based program called Debris Flow Analyzer for simulating the hazard extent of debris flow on the assumption that is uniform continuous, incompressible, unsteady. The Debris Flow Analyzer was designed to process debris flow numerical simulation with Finite Difference Formulation; smoothed DEM, slope, debris flow directions, extract valley, debris volume, water volume, debris flow moving speed, effective viscosity, dynamic friction coefficient. Also, it is expected that we can be improved the inform of debris flow hazard map by Google Earth.

Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels (복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석)

  • Hong, Seong-Ho;Shin, Jong-Keun;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

Preliminary Simulation Analysis of the LASGIT Experiment (방사성 폐기물의 지중저장을 위한 스웨덴 LASGIT 실험의 예비적인 시뮬레이션 분석)

  • Park, Chan-Hee;Walsh, Robert
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.197.2-197.2
    • /
    • 2011
  • Preliminary analysis on the modeling conditions and the simulation results is conducted only to evaluate the correctness of the simulation configuration further to apply for the LASGIT project. Except for the unrealistic modeling conditions for the relations of capillary pressure and relative permeability against water saturation used previously, the simulation results successfully demonstrate Helium propagation typical for two-phase flow. Further elaborated simulation with more realistic parameters should complete the weak points of the preliminary work.

  • PDF

Design of RTM molds for CFRP by carbon fiber draping and resin flow simulation (탄소섬유 드레이핑 및 수지 유동 해석을 통한 CFRP 제조용 RTM 금형 설계)

  • Choi, Gwang Mook;Chae, Hong Jun
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents the design strategy for the optimal RTM molds of Carbon Fiber Reinforced Plastic (CFRP) by carbon fiber draping and resin flow simulation. First, the mold shape and molding condition were determined considering the undercut and die face of the product in the draping simulation, which made the preliminary shape of the product by compressing the carbon fiber. After that, the diffusion behavior during the injection of resin in the mold was predicted by the resin flow simulation. Finally, the optimal mold shape was designed by selecting the locations of resin injection port and vent based on total results of simulations. In this paper, the mold of automotive side mirror case was selected as the representative product. Also, the actual mold was manufactured based on the simulation design to confirm the practicality of it. This study is expected to contribute to the industry as a technology to improve the reliability and productivity of CFRP producted by RTM process.

A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement (다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서)

  • Chung Wan-Young;Kim Tae-Yong;Seo Yong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, S.I.;Park, W.G.;Lee, K.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.177-184
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

  • PDF

Numerical Simulation of Gaseous Flow in Microchannel

  • Islam, Md. Tajul;Lee, Jong-Hoon;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.272-281
    • /
    • 2007
  • A numerical simulation on nitrogen gas flow in a long parallel plate microchannel was performed to obtain the effect of compressibility and rarefaction on gaseous flow in microchannels. The simulation was based on steady. two dimensional compressible Navier-Stokes and energy equations with noslip and first order slip boundary conditions. The channel was $1.2{\mu}m$ deep and $3000{\mu}m$ long. The Reynolds numbers were in the range of order from $10^{-2}$ to $10^{-1}$. So the flow was assumed to be laminar. The computations were performed on various pressure ratios. The outlet pressure was fixed to atmospheric pressure. The outlet Knudsen number was 0.0585, consequently the flow was in the slip flow regime. The computations were performed with the assumption of isothermal channel walls. The results were compared with the experimental data. The agreement was good.

A Numerical Study on Steam Flow and Beat Transfer of Pannier-arrangement Condensers

  • Hou Pingli;Yu Maozheng
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.98-104
    • /
    • 2005
  • Pannier-arrangement condensers are usually adopted in the turbine generator units of combined cycle power plants. Optimization of operating performance and economy is an important goal, which requires accurate understanding of flow and heat transfer effects in the condenser. The tube bundle arrangement and steam flow behaviors of pannier-arrangement condensers are very different from those of common condensers. The physical model for existing numerical simulation program of condenser is refined by constructing the correlations for flow resistance and condensation heat exchange coefficient in which the influences of steam flow direction are considered according to available experimental data. The adaptability of the developed physical model and simulation program of pannier-arrangement condenser is verified with available experimental data.

A Study on the Structure of Turbulent Flow Fields According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation (대규모와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동장 구조에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the structure of turbulent flow fields according to the operating loads of three-dimensional small-size axial fan(SSAF). LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method because static pressure coefficients analysed by LES show a little bit larger than measurements including all flow coefficients. Also, it can be known that the wake of SSAF is divided into from axial flow to radial flow before and behind stall region according to the increase of static pressure through LES analysis.