• Title/Summary/Keyword: Flow Residence Time

Search Result 233, Processing Time 0.025 seconds

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

Numerical Simulation for the Improvement of Complex Incinerator (신개념 소각 연소실의 성능향상을 위한 해석연구 사례)

  • Go, Young-Gun;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.157-163
    • /
    • 2002
  • Using the CFD method, we investigated the combustion characteristics of grate-rotary kiln incinerator through the residence time, path line of flow and distributions of temperature and CO mass fraction according to the shape of mixing chamber and the existence and nonexistence of baffle at the exit of bypass duct. The results show that the now mixing and residence time could be variable according to the shape of mixing chamber and baffle, and we could know the temperature in the mixing chamber could increase too high if the combustion process on the grate retarded.

  • PDF

Discussion on the Practical Use of CFD for Grate Type Waste Incinerators (회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰)

  • Ryu C.;Choi S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.

CFD aided design of the continuous casting tundish (전산유체기법을 이용한 연속주조 Tundish 의 형상 설계)

  • Cho J. R.;Ha M. Y.;Lee S. W.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.117-128
    • /
    • 1997
  • Effects of dam and weir on the fluid flow and behavior of inclusions in the continuous casting tundish have been studied using the CFD (Computational Fluid Dynamics) technique. Inclusions affecting the quality of steel products have been considered to be passive: the fluid flow has been obtained for unstaggered grid points defined on body-fitted generalized cuvilinear coordinates with no attention on inclusions, and the spatial propagation of inclusions has been determined by using the flow field data. The result show that the dam and weir direct the flow to the free surface and increase the residence time of inclusions significantly, and thereby that inclusions have much more chance to be floated to the free surface of the tundish where it is eliminated. It is also found that they offer more margin on the geometric design of exit nozzles connected to moulds. This finding is particularly important for twin casting operations where the quality of steel products from the two moulds be kept uniformly.

  • PDF

Flow Analysis of Dry-Type Hollowed Adsorption Tower for Treatment of Deodorization (악취처리를 위한 건식 중공 흡착탑에 대한 유동해석)

  • Cho, En-man;Jeong, Won-hoon;Kim, Bong-hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.64-70
    • /
    • 2022
  • The aim of this study is to improve the purification efficiency of odor gas by increasing the contact area between an odor gas and adsorbent. To analyze the flow in the adsorption tower, the flow characteristics in the hollow activated carbon-adsorption tower are identified by applying the loss model, which is a porous flow analysis model. The flow characteristics are investigated for pressure loss, velocity distribution, turbulent kinetic energy, and residence time distribution. The results show that the hollow adsorption tower performs better than the solid adsorption tower in terms of pressure loss and performance. The inner diameter of the hollow region inside the adsorption tower is 0.64 m (Di/Do = 0.37). Furthermore, the adsorbent performance is unaffected even when adsorbent stages are installed to replace the adsorbent.

Analysis of Residence Time Distribution in Extrusion Process Including the Effect of 3-D Circulatory Flow (3차원 순환 유동효과를 고려한 압출공정에서의 체류시간 분포해석)

  • 권태헌
    • The Korean Journal of Rheology
    • /
    • v.3 no.2
    • /
    • pp.135-147
    • /
    • 1991
  • 압출공정 중에 화학반응이 수반되는 경우에 화확반응은 온도와 체류시간분포 (Residence Time Distribution (RTD))에 의해 결정되므로 압출기의 설계 및 공정조건의 확 립에 있어서 RTD를 정확히 측정하거나 예측하는 것은 매우 중요하다. RTD를 예측하기 위 해 제안된 종래의 방법은 압출기내에서의 유동을 2차원으로 단순화하여 RTD와 체류시간분 포함수 f(T)와 누적 체류시간 분포함수 F(T)를 해석적으로 구하였다. 그러나 이러한 종래의 RTD에 관한 해석방법은 실제압출기 내부에서 일어나는 3차원적 순환유동(Circulatory Flow)을 정확하게 고려하지 못하는 문제점을 갖고 있다. 본논문에서는 RTD를 정확하게 예 측하기 위하여 3차원 순환유동을 고려한 RTD를 구하는 방식을 제시하고 f(T)에 관한 새로 운 공식을 유도하였다. 새로운 방식을 적용하기 위해서 유사 3차원(Quasi-3-Dimensional) 유한요소 해석법을 이용하여 속도분포를 구한 후에 순환유동을 고려한 RTD 및 f(T), F(T) 를 계산하였다. 순환유동이 고려안된 종래의 방법에 따른 계산 결과와 비교한 결과로서 종 래의 방식은 순환유동이 고려안되었기 때문에 RTD를 과소평가하는 경향이 있음을 알수 있 었다.

  • PDF

Nano-Soot Particle Formation in Inverse Diffusion Flames (인버스 확산화염에서의 나노 수트 입자 생성)

  • Lee, Eui-Ju;Shin, Hyun-Joon;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.19-26
    • /
    • 2003
  • Experimental measurements of flame structure and soot characteristics were performed for ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

  • PDF

Overall Heat Transfer Coefficients and Thermal Performance Evaluation through Heat Flux Measurement at Nakseonjae in Changdeokgung (창덕궁 낙선재 외피 열류량 실측을 통한 열관류율 산정 및 열 성능 해석)

  • Kim, Min-Hwi;Kim, Jin-Hyo;Kwon, Oh-Hyun;Han, Wook;Jeong, Jae-Weon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.190-195
    • /
    • 2008
  • The objective of this research is to determine overall heat transfer coefficients (K-value) of exterior wall, floor, and roof of Nakseonjae, a Korean traditional residence via field measurement of transient heat flow and temperature difference across each envelope component. Heat flow sensors and T-type thermocouple were attached on the internal and the external surface of each building component, and real-time measurement data were collected for the three consecutive summer days. The K-values determined in this research showed good agreement with other results from open literature. Peak and annual thermal loads of the traditional residence estimated by a commercial energy simulation program were compared with those for a current apartment house. The traditional house showed lower annual cooling load than that of the current building. It may caused by the fact that the traditional building has less air-tight envelopes and no fenestration passing direct solar radiation into the space.

  • PDF

Application and Evaluation of the Sheet Flow Channel for Water Quality Improvement in the Stream (하천 내 수질 개선을 위한 박층류 하도의 적용 및 평가)

  • Lee, Du Han;Kim, Myounghwan;Gu, Jung-Eun;Kim, Won
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.208-216
    • /
    • 2019
  • This study investigated design factors and removal efficiencies of a sheet flow channel as natural type water improvement techniques in the stream. The channel was designed considering the design factors, then constructed and monitored in the test bed of the Osan stream's floodplain. Water lever, velocity, discharge, T-P, T-N, and NO3-N were monitored and the removal efficiencies and design formula were suggested. Overall efficiencies of T-P, T-N, and NO3-N range 10 - 20%, and they show consistent relations with residence times. Minimum velocity requirement is also suggested from the relation of algae conditions and velocities. Relation formula of residence time and removal efficiency will be applicable in the design and operation process of a sheet flow channel.

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF