• Title/Summary/Keyword: Flow Regime

Search Result 632, Processing Time 0.031 seconds

Visualization and Electrical Response of Electroconvective Vortices on the Surface of Homo/Heterogeneous Ion Exchange Membranes (이온교환막의 균질/비균질 표면 형상에 따른 전기 와류 가시화 및 전기적 특성 분석)

  • Myeonghyeon Cho;Jinwoong Choi;Bumjoo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.21-28
    • /
    • 2023
  • The electromembrane process, which has advantages such as scalability, sustainability, and eco-friendliness, is used in renewable energy fields such as fuel cells and reverse electrodialysis power generation. Most of the research to visualize the internal flow in the electromembrane process has mainly been conducted on heterogeneous ion exchange membranes, because of the non-uniform swelling characteristics of the homogeneous membrane. In this study, we successfully visualize the electro-convective vortices near the Nafion homogeneous membrane in PDMS-based microfluidic devices. To reinforce the mechanical rigidity and minimize the non-uniform swelling characteristics of the homogeneous membrane, a newly developed swelling supporter was additionally adapted to the Nafion membrane. Thus, a clear image of electroconvective vortices near the Nafion membrane could be obtained and visualized. As a result, we observed that the heterogeneous membrane has relatively stronger electroconvective vortices compared to the Nafion homogeneous membranes. Regarding electrical response, the Nafion membrane has a higher limiting current and less overlimiting current compared to the heterogeneous membrane. Based on our visualization, it is assumed that the heterogeneous membrane has more activated electroconvective vortices, which lower electrical resistance in the overlimiting current regime. We anticipate that this work can contribute to the fundamental understanding of the ion transport characteristics depending on the homogeneity of ion exchange membranes.

Habitat change analysis of Fish Community to Building Block Methodology Mimicking Natural Flow Regime Patterns in Nakdong River in South Korea (자연유황 패턴을 모방한 BBM에 대한 물고기 군집의 서식처 변화 분석: 낙동강 유역을 대상으로)

  • Kim, Soohong;Jung, Kichul;Kang, Hyeongsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.471-471
    • /
    • 2022
  • 도시화로 인한 하천 건천화가 심각해짐에 따라 생태계 종 다양성 감소와 서식처 파괴 등 다양한 생태학적 문제가 발생한다. 건강한 하천 생태계를 유지하기 위해서는 유량 감소로 인한 수생태계 건강성 회복을 위해서는 어류 종에 따른 적합한 생태 유량을 산정해야 한다. 특히 발전방류로 인한 유량 변화는 하류에 서식하는 어류에 직접적인 영향을 미치므로 댐 방류량에 의한 서식처 면적 변화에 대한 연구가 필요하다. 이에 본 연구에서는 1) 낙동강 상류 구담교 유역을 대상으로 안동댐과 임하댐 유입량을 활용한 BBM (Building Block Methodology)을 구축하고, 2) 대상 하천의 River2D 모형을 구축하여, 3) 대표·대리 어종에 대한 자연유황과 BBM에 따른 가중가용면적(Weighted Usable Area, WUA)을 산정하였다. 2006년 ~ 2020년 자료를 기반으로, 시나리오1은 실측 유량을 활용하였으며, 시나리오2는 전체기간, 홍수년, 갈수년 그리고 평수년으로 구분하여 댐 유입량을 기반으로 산정한 BBM을 활용하였다. 시나리오 분석 결과, 가중가용면적이 감소하는 일부 기간도 존재하였으나, 전반적으로 BBM을 반영한 시나리오 2에서 서식처 면적이 증가하는 것으로 나타났다. 대표 어종 피라미의 경우 최대 약 18% 가중가용면적이 감소하는 기간이 존재하였으나, 최대 79%의 서식처 향상 효과가 나타났다. 대리어종 모래무지의 경우 마찬가지로 최대 약 18%의 서식처 감소 효과가 나타나는 기간이 존재하였으나, 최대 78%의 서식처 향상 효과가 나타나는 것으로 나타났다. 따라서 자연유황을 모방하여 댐 방류 패턴을 변경하는 것이 하류에 서식하는 어류의 서식처 개선에 더 효과적인 것으로 판단된다. 다만 서식처에 영향을 주는 물리적 요인(댐 방류량 등) 외에도 생물·화학적 요인이 존재하므로, 향후 다양한 요인을 고려한 연구를 통해 효과적인 서식처 개선 방안을 모색할 수 있을 것으로 기대된다.

  • PDF

Future Runoff Characteristics of Ganwol Estuary Reservoir Watershed Based on SSP Scenarios (SSP 기후변화 시나리오에 따른 간월호 유역의 미래 유출특성 변화)

  • Kim, Sinae;Kim, Donghee;Kim, Seokhyeon;Hwang, Soonho;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.25-35
    • /
    • 2023
  • The estuary reservoir is a major source of agricultural water in Korea; for effective and sustainable water resource management of the estuary reservoir, it is crucial to comprehensively consider various water resource factors, including water supply, flood, and pollutant management, and analyze future runoff changes in consideration of environmental changes such as climate change. The objective of this study is to estimate the impact of future climate change on the runoff characteristics of an estuary reservoir watershed. Climate data on future Shared Socioeconomic Pathway (SSP) scenarios were derived from two Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 6 (CMIP6). The Hydrological Simulation Program-Fortran (HSPF) was used to simulate past and future long-term runoff of the Ganwol estuary reservoir watershed. The findings showed that as the impact of climate change intensified, the average annual runoff in the future period was higher in the order of SSP5, SSP3, SSP1, and SSP2, and the ratio of runoff in July decreased while the ratio of runoff in October increased. Moreover, in terms of river flow regime, the SSP2 scenario was found to be the most advantageous and the SSP3 scenario was the most disadvantageous. The findings of this study can be used as basic data for developing sustainable water resource management plans and can be applied to estuary reservoir models to predict future environmental changes in estuary reservoirs.

The Effect of Rain on Traffic Flows in Urban Freeway Basic Segments (기상조건에 따른 도시고속도로 교통류변화 분석)

  • 최정순;손봉수;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.29-39
    • /
    • 1999
  • An earlier study of the effect of rain found that the capacity of freeway systems was reduced, but did not address the effects of rain on the nature of traffic flows. Indeed, the substantial variation due to the intensity of adverse weather conditions is entirely rational so that its effects must be considered in freeway facility design. However, all of the data in Highway Capacity Manual(HCM) have come from ideal conditions. The primary objective of this study is to investigate the effect of rain on urban freeway traffic flows in Seoul. To do so, the relations between three key traffic variables(flow rates, speed, occupancy), their threshold values between congested and uncontested traffic flow regimes, and speed distribution were investigated. The traffic data from Olympic Expressway in Seoul were obtained from Imagine Detection System (Autoscope) with 30 seconds and 1 minute time periods. The slope of the regression line relating flow to occupancy in the uncongested regime decreases when it is raining. In essence, this result indicates that the average service flow rate (it may be interpreted as a capacity of freeway) is reduced as weather conditions deteriorate. The reduction is in the range between 10 and 20%, which agrees with the range proposed by 1994 US HCM. It is noteworthy that the service flow rates of inner lanes are relatively higher than those of other lanes. The average speed is also reduced in rainy day, but the flow-speed relationship and the threshold values of speed and occupancy (these are called critical speed and critical occupancy) are not very sensitive to the weather conditions.

  • PDF

Capacitively Coupled SF6, SF6/O2, SF6/CH4 Plasma Etching of Acrylic at Low Vacuum Pressure (저진공 축전결합형 SF6, SF6/O2, SF6/CH4 플라즈마를 이용한 아크릴의 반응성 건식 식각)

  • Park, Yeon-Hyun;Joo, Young-Woo;Kim, Jae-Kwon;Noh, Ho-Seob;Lee, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.68-72
    • /
    • 2009
  • This study investigated dry etching of acrylic in capacitively coupled $SF_6$, $SF_6/O_2$ and $SF_6/CH_4$ plasma under a low vacuum pressure. The process pressure was 100 mTorr and the total gas flow rate was fixed at 10 sccm. The process variables were the RIE chuck power and the plasma gas composition. The RIE chuck power varied in the range of $25{\sim}150\;W$. $SF_6/O_2$ plasma produced higher etch rates of acrylic than pure $SF_6$ and $O_2$ at a fixed total flow rate. 5 sccm $SF_6$/5 sccm $O_2$ provided $0.11{\mu}m$/min and $1.16{\mu}m$/min at 25W and 150W RIE of chuck power, respectively. The results were nearly 2.9 times higher compared to those at pure $SF_6$ plasma etching. Additionally, mixed plasma of $SF_6/CH_4$ reduced the etch rate of acrylic. 5 sccm $SF_6$/5 sccm $CH_4$ plasma resulted in $0.02{\mu}m$/min and $0.07{\mu}m$/min at 25W and 150W RIE of chuck power. The etch selectivity of acrylic to photoresist was higher in $SF_6/O_2$ plasma than in pure $SF_6$ or $SF_6/CH_4$ plasma. The maximum RMS roughness (7.6 nm) of an etched acrylic surface was found to be 50% $O_2$ in $SF_6/O_2$ plasma. Besides the process regime, the RMS roughness of acrylic was approximately $3{\sim}4\;nm$ at different percentages of $O_2$ with a chuck power of 100W RIE in $SF_6/O_2$ plasma etching.

An Influence of Point-Source and Flow Events on Inorganic Nitrogen Fractions in a Large Artificial Reservoir (대형 인공호에서 무기 질소원에 대한 점오염원 및 유입수의 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.350-357
    • /
    • 2000
  • This paper evaluated the influence of point source and flow events on inorganic nitrogen fractions at 17 sites of Taechung Reservoir during 1993${\sim}$1994. Total nitrogen (TN) averaged 1.53 mg/L during the study and ranged between 0.70 and 2.56 mg/L. Dissolved inorganic nitrogen(DIN) accounted for >90% of TN regardless of season and location, indicating a nitrogen-rich system showing eutrophic${\sim}$hypereutrophic conditions. Some 67${\sim}$94% of DIN was NO$_{3}$-N, whereas mean level of NH$_{4}$-N was less than 5% of DIN. During monsoon 1993, dilution of NO$_{3}$-N was evident in the headwaters as a result of mixing of lake water with rain water, while NH$_{4}$-N increased>100% compared to the premonsoon. Values of NH$_{4}$-N had a positive correlation with rainfall (r=0.85; p<0.001) and negative correlations with theoretical water residence time(r=-0.90; p<0.001) and conductivity(r=-0.78, p<0.001), respectively. These outcomes suggest that NH$_{4}$-N came from external input from the watershed during the monsoon. In both years, mean TN was greater in the mid-lake sites than any other sites. A great amount of TN in the mid-lake was most pronounced in monsoon 1994 because of an accumulated influence of the point sources during low inflow. Overall data suggest that concentrations of TN in this system did not show large differences along the longitudinal gradients and its distributions is likely determined by point-sources rather than inflow regime.

  • PDF

Circulation Dynamics of Keum River Estuary II. Fluid Dynamic Characteristics (錦江 河口의 海水循環力學 弟2報 流體力學的 諸特性)

  • Chung, Jong Yul;Bhang, In Kweon
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.141-152
    • /
    • 1984
  • In order to investigate the circulation dynamics of the Keum River estuary, 300velocity fields obtained at six sites over two tidal cycles by using instantaneous profiling technique were analyzed in detail. In this investigation, the variability of shear velocity, bottom shear stress, drag coefficient, and roughness length scale were confirmed. The measured values of the bottom boundary drag coefficient show wide range of variations, i.e., C$\_$100/=6.78${\times}$10$\^$-5/∼1.15${\times}$10$\^$-1/, and the mean of 300 measurements is 1.6${\times}$10$\^$-2/. The relationship between U* and C$\_$100/ also show the scatter in values. However, overall mean values over two tidal cycles at 6 stations show that if U* 1cm/s, C$\_$100/ is unpredictable, if U* 1cm/s, C$\_$100/ increase with U*. The values of Re$\_$100/ and C$\_$100/ have scatter. But the overall mean values over two tidal cycles show that if Re$\_$100/ 3.6${\times}$10$\^$5/, C$\_$100/ is unpredictable, if Re$\_$100/ 3.6${\times}$10$\^$5/, C$\_$100/=1.4${\times}$10$\^$-2/. Finally the flow regime of the Keum River estuary was classified as "subcritical fully turbulent" flow.

  • PDF

Comparison of physics-based and data-driven models for streamflow simulation of the Mekong river (메콩강 유출모의를 위한 물리적 및 데이터 기반 모형의 비교·분석)

  • Lee, Giha;Jung, Sungho;Lee, Daeeop
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.503-514
    • /
    • 2018
  • In recent, the hydrological regime of the Mekong river is changing drastically due to climate change and haphazard watershed development including dam construction. Information of hydrologic feature like streamflow of the Mekong river are required for water disaster prevention and sustainable water resources development in the river sharing countries. In this study, runoff simulations at the Kratie station of the lower Mekong river are performed using SWAT (Soil and Water Assessment Tool), a physics-based hydrologic model, and LSTM (Long Short-Term Memory), a data-driven deep learning algorithm. The SWAT model was set up based on globally-available database (topography: HydroSHED, landuse: GLCF-MODIS, soil: FAO-Soil map, rainfall: APHRODITE, etc) and then simulated daily discharge from 2003 to 2007. The LSTM was built using deep learning open-source library TensorFlow and the deep-layer neural networks of the LSTM were trained based merely on daily water level data of 10 upper stations of the Kratie during two periods: 2000~2002 and 2008~2014. Then, LSTM simulated daily discharge for 2003~2007 as in SWAT model. The simulation results show that Nash-Sutcliffe Efficiency (NSE) of each model were calculated at 0.9(SWAT) and 0.99(LSTM), respectively. In order to simply simulate hydrological time series of ungauged large watersheds, data-driven model like the LSTM method is more applicable than the physics-based hydrological model having complexity due to various database pressure because it is able to memorize the preceding time series sequences and reflect them to prediction.

Application of SWAT-CUP for Streamflow Auto-calibration at Soyang-gang Dam Watershed (소양강댐 유역의 유출 자동보정을 위한 SWAT-CUP의 적용 및 평가)

  • Ryu, Jichul;Kang, Hyunwoo;Choi, Jae Wan;Kong, Dong Soo;Gum, Donghyuk;Jang, Chun Hwa;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • The SWAT (Soil and Water Assessment Tool) should be calibrated and validated with observed data to secure accuracy of model prediction. Recently, the SWAT-CUP (Calibration and Uncertainty Program for SWAT) software, which can calibrate SWAT using various algorithms, were developed to help SWAT users calibrate model efficiently. In this study, three algorithms (GLUE: Generalized Likelihood Uncertainty Estimation, PARASOL: Parameter solution, SUFI-2: Sequential Uncertainty Fitting ver. 2) in the SWAT-CUP were applied for the Soyang-gang dam watershed to evaluate these algorithms. Simulated total streamflow and 0~75% percentile streamflow were compared with observed data, respectively. The NSE (Nash-Sutcliffe Efficiency) and $R^2$ (Coefficient of Determination) values were the same from three algorithms but the P-factor for confidence of calibration ranged from 0.27 to 0.81 . the PARASOL shows the lowest p-factor (0.27), SUFI-2 gives the greatest P-factor (0.81) among these three algorithms. Based on calibration results, the SUFI-2 was found to be suitable for calibration in Soyang-gang dam watershed. Although the NSE and $R^2$ values were satisfactory for total streamflow estimation, the SWAT simulated values for low flow regime were not satisfactory (negative NSE values) in this study. This is because of limitations in semi-distributed SWAT modeling structure, which cannot simulated effects of spatial locations of HRUs (Hydrologic Response Unit) within subwatersheds in SWAT. To solve this problem, a module capable of simulating groundwater/baseflow should be developed and added to the SWAT system. With this enhancement in SWAT/SWAT-CUP, the SWAT estimated streamflow values could be used in determining standard flow rate in TMDLs (Total Maximum Daily Load) application at a watershed.

Variations of Annual Evapotranspiration nnd Discharge in Three Different Forest-Type Catchments, Gyeonggido, South Korea (임상이 다른 3개 산림소유역의 장기 증발산량과 유출량의 변화)

  • Kim Kyong-Ha;Jeong Yong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.174-182
    • /
    • 2006
  • This study was to clarify the effects of forest stand changes on hydrological components of evapotranspiration and discharge. The forest-hydrological experimental stations in Gwangneung and Yangju, Gyeonggido near metropolitan Seoul have been operated by the Korea Forest Research Institute since 1979 to clarify the effects of forest types and practices on the water resources and nutrient cycling and soil loss. The hydrological regime of the forested catchments may change as forests develop. The ranges of change may be different depending on forest types. Evapotranspiration can be estimated to 679mm, 580mm and 368mm in planted young coniferous (PYC), natural old-growth deciduous (NOD) and rehabilitated young mixed (RYM), respectively. The slope of the discharge-duration curve shows the capacity of discharge control in a specific catchment. The slope tended to be steeper in RYM than NOD, the better forest condition. The slope in RYM became more gentle as the forest stand developed. Forests can modulate peak flows through interception, evapotranspiration and soil storage opportunity. PYC and RYM showed 100 and 50mm of threshold rainfall for modulating peak flows, respectively. The deciduous forest did not represent sudden changes of peak flow rates to rainfall, even 200 mm rainfall Forest development in PYC may play an important role in modulation of peak flows because peak flow rates reduced after 10 years.