• Title/Summary/Keyword: Flow Properties

Search Result 3,786, Processing Time 0.032 seconds

A Study on the Effects of Tool Geometry on Chip Flow (공구형상이 칩유동에 미치는 영향에 관한 연구)

  • 김경우;김우순;윤주식;채왕석;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.211-215
    • /
    • 2000
  • A new methodology is presented to evaluate material properties at high strain rates and high temperatures based on orthogonal metal cutting experiments and FEM simulations. Average strain rate and average temperature found in the deformation zone are computed and flow stress data at these conditions are modified until cutting forces calculated in simulations match those determined in experiments. Material properties obtained from this method were verified by additional metal cutting simulations. Derivation from cutting forces measured in experiments was less than 10%. The feasibility of tool design using FEM simulations is also demonstrated.

  • PDF

A Numerical Investigation on the Rule of Mixtures for the Mechanical Properties of Composites with Homogeneously Distributed Particles (입자가 균일하게 분포된 복합체의 기계적 성질과 혼합률에 관한 수치적 연구)

  • 김형섭
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.396-401
    • /
    • 2001
  • The concept of the mixtures can be used not only in the composites but also in the materials with precipitates and matrix. In this investigation, the finite element method of axisymmetric unit cell models and the rule of mixtures of the Voigt and the Reuss models are used to analyze the overall mechanical response of composites with homogeneously distributed particles. The calculations have been cameo out by taking the materials as i) hardening and ii) perfect plastic materials. The Plastic properties are predicted for various volume fractions of the soft and hard particles. The computational results are compared with the results of the rule of mixtures. It is found that the plastic flow curves agree well with the Voigt model when the volume fraction of the particles is high. On the other hand, the calculated flow curves exist between the Voigt model and the Reuss model when the volume fraction of the particles is low.

  • PDF

Study on Continuous-Flow Particle Separation in a Microchannel using Dielectrophoresis (마이크로 채널 내에서의 유전영동을 이용한 입자의 연속적인 분리에 대한 연구)

  • Ryu, Jeong-Eun;Kang, Kwan-Hyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.56-63
    • /
    • 2010
  • In this work, a dielectrophoresis-based particle-separation device is developed which is to be used to continuously separate particles in microchannels. We fabricated the particle-separation device with combining the benefits of electrode-based DEP and insulator-based DEP. The DEP forces are generated by an array of electrodes located in both sidewalls of a main channel. According to the magnitude and frequency of electrical signals, particles with different dielectric properties experience different DEP forces, and therefore, continuously move along different streamlines in the main flow channel without need of pre-focusing process. Based on this mechanism, we examined the performance of the device by controlling the trajectory of polystyrene particles. This device is applicable to the investigation of dielectric properties of biological cells as well as the continuous separation of biological cells.

The Basic Properties of Mortar and Concrete with added Urea (요소를 첨가한 모르타르 및 콘크리트의 기초물성)

  • Choi, Sung-Woo;Ryu, Deug-Hyun;Cho, Hong-Bum;Kim, Kwang-Ki;Seok, Won-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.269-270
    • /
    • 2018
  • Urea is liquefied when it is dissolved in water and has the effect of increasing water. It is known that when using urea, it is generally possible to reduce the number of design units in order to ensure the same flow-ability, because the effect of increasing the water when using urea in the manufacturing of concrete is known. In this study, the change of basic properties of concrete when using urea was investigated in concrete production, and the effect of reducing the unit yield was confirmed.

  • PDF

Size-controlled Growth of Fe Nanoparticles in Gas Flow Sputtering Process

  • Sakuma, H.;Aoshima, H.;Ishii, K.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.103-107
    • /
    • 2006
  • In grain oriented electrical steel process, hot band annealing has thought to be essential for obtaining good magnetic properties. New hot rolling method of heavy reduction in early hot rolling stage was applied to obtain good magnetic properties in GO process without hot band annealing. Hot rolling was carried out by varyinghot rolling reduction distribution along hot rolling pass. The heavy hot rolling reduction in rear stand improves the magnetic flux density in the case of no hot band annealing. The hot band specimens of the heavy reduction in front stand shows the elongated hot deformed microstructures in the center layer and strong {001}<110> texture.On the contrary, the heavily reduced specimens in rear stand shows the recrystallization in the center layer of hot band and strong {111}<112> and {110}<001> textures.

Rejection Properties of Silica Nanoparticles from Ultrafiltration Membranes

  • Hiromitsu Takaba;Yoshiaki Ito;Nakao, Shin-ichi
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • The rejection properties and flux rates of silica nanoparticles in ultrafiltration membranes has been investigated. Cross-flow permeation experiments were conducted using polycarbonate track-etch flat membranes with pore sizes of 30 and 50 nm, and a silica nanoparticle solute with particle sizes of 5 and 18 nm with narrow size distributions. The fluxes and rejection factors were investigated at various particle concentrations, cross-flow velocities, pH, and ionic strengths of solution. Even though the size of the silica nanoparticles was much smaller than that of the membrane pores, the observed rejection rates were very high compared with those for a similar-sized polymer (dextran). The observed rejection rate decreased with increasing ionic strength, which implies that the transport mechanism of the silica nanoparticles is significantly influenced by electrostatic repulsion between particles and membranes.

Characteristics of Pressure Drop in the Membrane Support Sheet for Reverse Osmosis (역삼투압용 막지지천의 압력강하 특성)

  • 장호남;김동필;김연철
    • Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.22-28
    • /
    • 1993
  • Fabrics of polyester, polyacrylics, nylon and cotton were tested to investigate the possibility. of using these matehals as a membrane support sheet. Considering the physical properties such as compaction rate, membrane embossing, water flux, the chemical and mechanical properties, 50 denlet polyester fabrics was found to be the appropriate material as a membrane support sheet among the tested materials. The experimental parameters such as pressure drop, compression pressure and viscosity were changed to investigate the effects of these parameters on the flow patten in this membrane support sheet. As a result, it was shown that Darcy's law could be satisfactorily applied to describe the flow pattern in this membrane support sheet.

  • PDF

The Effects of Molybdenum Content on the Dynamic Properties of Tungsten-based Heavy Alloys

  • Lee, Woei-Shyan;Chan, Tien-Yin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1155-1156
    • /
    • 2006
  • Hopkinson bar dynamic test under strain rates ranging from 2000 $s^{-1}$ to 8000 $s^{-1}$ at room temperature revealed that the flow stress of tungsten heavy alloys depended strongly on the strain, strain rate, and the content of molybdenum. The variation of flow stress was caused by the competition between work hardening and heat softening in the materials at different strain rates. The high temperature strength of the matrix phase was increased by the addition of molybdenum, which enhanced the strength of the tungsten heavy alloys in high strain rate test.

  • PDF

Properties of the Chemically Vapor Deposited Alumina Thin Film and Powder on Heat Treatment (CVD법으로 합성된 알루미나 박막 및 분말의 열처리에 따른 특성)

  • 최두진;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1989
  • A study on the APCVD(atmospheric pressure chemical vapor deposition) Al2O3 was done by using the aluminum-tri-isopropoxide/N2 reaction system at 40$0^{\circ}C$. When the flow rate of the carrier gas(N2) was over 2SLPM, heterogeneous reaction was observed. However, when the flow rate of the carrier gas was below 2SLPM, a porously deposited film or powder formation was observed. The film formed by a heterogeneous reaction was optically dense. The dense film is thought to be a kind of a hydrated alumina. After a thermal treatment of the film in the range of temperature from $600^{\circ}C$ to 1, 20$0^{\circ}C$, properties of the film seems to be changed due to dehydration and densification process. In the case of the powder on heat treatment(600~1, 20$0^{\circ}C$), both a phase transformation and the change of OH peak was observed.

  • PDF

Characteristics of ZnO Thin Films Grown on p-type Si and Sapphire Substrate by Pulsed Laser Deposition

  • Lee, K. C.;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.241-245
    • /
    • 2003
  • ZnO thin films on (l00) p-type Si and sapphire substrates have been deposited by a pulsed laser deposition technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters such as oxygen pressure, substrate temperature and laser energy density on the properties of the grown films was studied. The experiments were performed for substrate temperatures in the range of 200∼50$0^{\circ}C$ and oxygen pressure in the range of 100∼700 sccm. All of the films grown in this experiment show strong c-axis orientation with (002) textured ZnO peak. With increasing substrate temperature, the FWHM (full width at half maximum) and surface roughness were decreased. In the case of using sapphire substrate, the intensity of PL spectra increased with increasing ambient oxygen flow rate. We investigated the structural and morphological properties of ZnO thin films using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM).