• Title/Summary/Keyword: Flow Properties

Search Result 3,762, Processing Time 0.03 seconds

Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume

  • Ahmad, Subhan;Umar, Arshad;Masood, Amjad;Nayeem, Mohammad
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.31-37
    • /
    • 2019
  • This paper evaluates the workability and hardened properties of self-compacting concrete (SCC) containing silica fume as the partial replacement of cement. SCC mixtures with 0, 2, 4, 6, 8 and 10% silica fume were tested for fresh and hardened properties. Slump flow with $T_{500}$ time, L-box and V-funnel tests were performed for evaluating the workability properties of SCC mixtures. Compressive strength, splitting tensile strength and modulus of rupture were performed on hardened SCC mixtures. Experiments revealed that replacement of cement by silica fume equal to and more than 4% reduced the slump flow diameter and increased the $T_{500}$ and V-funnel time linearly. Compressive strength, splitting tensile strength and modulus of rupture increased with increasing the replacement level of cement by silica fume and were found to be maximum for SCC mixture with 10% silica fume. Further, residual hardened properties of SCC mixture yielding maximum strengths (i.e., SCC with 10% silica fume) were determined experimentally after heating the concrete samples up to 200, 400, 600 and $800^{\circ}C$. Reductions in hardened properties up to $200^{\circ}C$ were found to be very close to normal vibrated concrete (NVC). For 400 and $600^{\circ}C$ reductions in hardened properties of SCC were found to be more than NVC of the same strength. Explosive spalling occurred in concrete specimens before reaching $800^{\circ}C$.

Numerical Analysis of Ship's Propulsion Mechanism of Two-Stage Weis-Fogh Type by Discrete Vortex Method

  • 노기덕;한수환
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1548-1554
    • /
    • 2001
  • Flow patterns and dynamic properties of two-stage Weis-Fogh type ship propulsion mechanism are studied by a discrete vortex method. To study mutual interference between two wings, two cases are con sidered - wing motions with the same and reverse phases. The predicted flow patterns correspond to the available flow visualization results. Time histories of thrust and drag coefficients are also calculated, and the interference between the two wings are numerically clarified.

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권3호
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

재료의 변형거동 추적을 통한 예비형상 설계 (Preform Design Technique by Tracing The Material Deformation Behavior)

  • 홍진태;박철현;이석렬;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2004
  • Preform design techniques have been investigated in efforts to reduce die wear and forming load and to improve material flow, filing ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

  • PDF

말초혈관 혈류에서 진폭-스펙트럼-밀도 분석에 의한 당뇨병에서의 신경병증 및 갑상선 기능 유무 분류 (The classification of neuropathic and thyroid function of the diabetic using amplitude-spectrum-density analysis in peripheral blood vessels)

  • 남상희;최준영
    • 한국의학물리학회지:의학물리
    • /
    • 제9권1호
    • /
    • pp.23-28
    • /
    • 1998
  • 최근에 당뇨병이 말초혈관 혈류흐름에 치명적인 영향을 준다는 의학보고에 따라 기존의 혈액체취를 통한 혈액 속의 당치를 측정하는 방식 대신에 고분해능을 가진 LDF(Laser Dopller Flowmeter)를 이용하여 말초혈관 혈류를 측정하여 정상인과 당뇨병환자와의 차이점에 대하여 연구하였다. 여러 가지 분석 방법중, 본 연구에서는 주파수영역에서의 ASD방법을 통하여 그 차이를 분석하였다. 실험대상은 음성 신경병증, 양성 신경병증, 갑상선 기능 항진증, 갑상선 기능 저하증 등 4개의 당뇨병환자군과 당뇨병에 대한 정상군에 대하여 LDF를 측정하였다. 그 결과 모든 당뇨환자군은 정상인에 대하여 모든 진동수영역에서 낮은 ASD를 가져 당뇨병이 말초혈관 혈류운동에 손실을 가져옴을 확인하였고, 신경병증을 가진 환자와 갑상선기능저항증 당뇨환자군은 거의 모든 진동수 영역에서 낮은 ASD를 가졌다.

  • PDF

수치해석을 이용한 SHPB 시험의 마찰영향 분석 (An Investigation into the effect of friction in the split hopkinson pressure bar (SHPB) test by numerical experiments)

  • 차성훈;신명수;신현호;김종봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.204-209
    • /
    • 2008
  • The interest in the mechanical behavior of materials at high strain rates has increased in recent years, and by now it is well known that mechanical properties can be strongly influenced by the speed of applied load. The split Hopkinson pressure bar (SHPB) has been widely used to determine mechanical properties of materials at high loading rates. However, to ensure test reliability, measurement error source must be accounted for and eliminated. During experiment, the specimens were located between the incident and the transmit bar. The presence of contact frictions between the test bars and specimen may cause errors. In this work, numerical experiments were carried out to investigate the effect of friction on test results. In SHPB test, the measured stress by the transmitted bar is assumed to be flow stress of the test specimen. Through the numerical experiments, however, it is shown that the measured stress by the transmit bar is axial stress components. When, the contact surface is frictionless, the flow stress and the axial stress of the specimen are about the same. When the contact surface is not frictionless, however, the flow stress and the axial stress are not the same anymore. Therefore, the measured stress by the transmitted bar is not flow stress. The effect of friction on the difference between flow stress and axial stress is investigated.

  • PDF

Wall slip of vaseline in steady shear rheometry

  • Song, Ki-Won;Chang, Gap-Shik;Koo, Ja-Seung
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.55-61
    • /
    • 2003
  • The steady shear flow properties of vaseline generally used as a base of the pharmaceutical dosage forms were studied in the consideration of wall slip phenomenon. The purpose of this study was to show that how slip may affect the experimental steady-state flow curves of semisolid ointment bases and to discuss the ways to eliminate (or minimize) wall slip effect in a rotational rheometer. Using both a strain-controlled ARES rheometer and a stress-controlled AR1000 rheometer, the steady shear flow behavior was investigated with various experimental conditions ; the surface roughness, sample preparation, plate diameter, gap size, shearing time, and loading methods were varied. A stress-controlled rheometer was suitable for investigating the flow behavior of semisolid ointment bases which show severe wall slip effects. In the conditions of parallel plates attached with sand paper, treated sample, smaller diameter fixture, larger gap size, shorter shearing time, and normal force control loading method, the wall slip effects could be minimized. A critical shear stress for the onset of slip was extended to above 10,000 dyne/$\textrm{cm}^2$. The wall slip effects could not be perfectly eliminated by any experimental conditions. However, the slip was delayed to higher value of shear stress by selecting proper fixture properties and experimental conditions.

재료의 변형거동 추적을 통한 예비형상 설계 (Preform Design Technique by Tracing the Material Deformation Behavior)

  • 홍진태;박철현;이석렬;양동열
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

정체수역으로 방류된 수평병합부력제트의 진동운동에 대한 실험적 연구 (Experimental Investigation on the Flapping Motions of Horizontal Merging Buoyant Jet Discharged into Stationary Ambient Water)

  • 류시완;서일원
    • 한국수자원학회논문집
    • /
    • 제38권8호
    • /
    • pp.691-698
    • /
    • 2005
  • 본 연구에서는 정체수역으로 방류되는 수평병합부력제트에 대한 실험을 수행하여, 평민제트의 고유한 특징으로만 알려져 왔던 진동운동에 대해 구명하고자 하였다. 연구결과, 진동운동은 병합부력제트에서도 확인되었으며, 특히 병합천이역 시점에서부터 관찰되었다. 흐름의 국부적인 특성치와 진동운동을 야기하는 와의 통과빈도와의 관계를 나타내는 Strouhal수는 병합천이역에서 변화하여 병합이 완전히 이루어진 후에는 일정한 값으로 수렴하는 것으로 관측되었다. 평면제트에 대해서 구해진 진동운동의 특성이 병합천이역과 국부흐름특성치의 변화를 고려할 경우, 병합부력제트의 진동운동도 나타낼 수 있음을 알 수 있었다.

폴리프로필렌/유리섬유 복합재료의 유변물성에 미치는 상용화제의 영향 (The Effect of Compatibilizer on the Rheological Properties of Polypropylene/Glass-fiber Composites)

  • 이승환;윤재륜
    • Composites Research
    • /
    • 제19권3호
    • /
    • pp.15-22
    • /
    • 2006
  • 유리섬유로 강화된 폴리프로필렌 복합재료를 이축압출장치를 이용하여 제조하였으며 폴리프로필렌 수지와 유리섬유간의 결합성을 증대시키고 가공성을 향상시킬 목적으로 말레익 안하이드라이드(maleic anhydride) 결합기를 가지는 상용화제를 첨가하였다. 제조된 폴리프로필렌/유리섬유 복합재료에 대한 전단유동과 신장유동의 특성을 조사하였으며, 특히 상용화제 첨가와 유리섬유의 함량에 대한 영향을 주로 평가하였다. 전단유동에서 상용화제는 폴리프로필렌과 유리섬유간의 결합력을 증대시키고, 흐름성을 개선시키는 역할을 하였으며, 신장유동에서는 유리섬유의 함량이 증가됨에 따라서 신장점도를 더욱 증가시켜주는 역할을 하였다. 그러나 신장속도가 증가함에 따라서 유리섬유 사이에서 형성되는 미세한 전단유동의 영향으로 오히려 신장점도는 감소하였다.