• 제목/요약/키워드: Flow Oscillation

검색결과 509건 처리시간 0.022초

원관내 층류 왕복유동에 의한 열적발달영역에서의 열전달 (Heat Transfer by Liminar Oscillating Pipe Flow in Thermally Developing Region)

  • 이대영;박상진;노승탁
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.997-1008
    • /
    • 1994
  • Heat transfer by laminar oscillating flow in a circular pipe has been studied analytically. The general solution with respect to the arbitrary wall boundary condition is obtained by superposing the fluid temperatures with the sinusoidal wall temperature distributions. The fulid temperature distributions are two dimensional, but uniform flow assumption is used to simplify the velocity distribution. The heat transfer characteristics in the thermally developing regions are analyzed by applying the general solution to the two cases of thermal boundary conditions in which the wall temperature and wall heat flux distributions have a square-wave form, respectively. The results show that the length of the thermally developing region becomes larger in proportion to the oscillation frequency at slow oscillation and eventually approaches to the value comparable to the swept distance as the frequency increases. The time and cross-section averaged Nusselt number in the developing region is inversely proportional to the square root of the distance from the position where the wall boundary condition is changed suddenly. In the developed region, Nusselt number is only determined by the oscillation frequency.

하이브리드 로켓의 추력제어를 위한 추력 섭동 감쇠에 관한 연구 (Suppression of Thrust Oscillation for Hybrid Rocket Thrust Control Applications)

  • 강완규;최재성;허환일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.197-201
    • /
    • 2010
  • 정확한 산화제 유량조절은 하이브리드 로켓의 추력제어에 매우 중요하다. 산화제 유량제어를 위해 스텝모터와 니들밸브를 결합하여 장치하고 Labview 프로그램으로 제어하는 산화제 유량제어 장치를 설계하였다. 하이브리드 로켓 연소실험에 사용한 산화제는 기체산소를 사용하였고, 추진제로는 PolyCarbonate, PolyEthylene PMMA를 사용하였다. 본 연구에서는 초기 추력제어 실험에서 발생한 추력 섭동(Oscillation)을 감쇠시키기 위한 연구로 추력제어 실험에서 공급되는 산화제 배관 유속의 변화를 통해 발생되는 추력 섭동의 원인을 분석하였으며, 추진제 종류에 따라 달라지는 안정적인 제어 조건을 찾기 위한 연구를 수행하였다.

  • PDF

Cavitation Surge Suppression of Pump Inducer with Axi-asymmetrical Inlet Plate

  • Kim, Jun-Ho;Ishzaka, Koichi;Watanabe, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.50-57
    • /
    • 2010
  • The attachment of inducer in front of main impeller is a powerful method to improve cavitation performance. Cavitation surge oscillation, however, often occurs at partial flow rate and extremely low suction pressure. As the cavitation surge oscillation with low frequency of about 10 Hz occurs in a close relation between the inlet backflow cavitation and the growth of blade cavity into the throat section of blade passage, one method of installing an axi-asymmetrical plate upstream of inducer has been proposed to suppress the oscillation. The inlet flow distortion due to the axi-asymmetrical plate makes different elongations of cavities on all blades, which prevent the flow from becoming simultaneously unstable at all throat sections. In the present study, changes of the suppression effects with the axial distance between the inducer inlet and the plate and the changes with the blockage ratios of plate area to the cross-sectional area of inducer inlet are investigated for helical inducers with tip blade angles of $8^{\circ}$ and $14^{\circ}$. Then a conceivable application will be proposed to suppress the cavitation surge oscillation by installing axi-asymmetrical inlet plate.

부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동 (Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames)

  • 박진욱;박정;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성 (Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity)

  • 이진호;이동진;전창덕
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

근접한 세 원형구조물의 공기역학적 거동에 대한 연구 (A Study on the aerodynamic response of approximated three circular cylinders)

  • 최창근;김윤석
    • 대한토목학회논문집
    • /
    • 제12권4호
    • /
    • pp.11-22
    • /
    • 1992
  • 본 연구에서는 횡열(橫列)배치된 두 원형구조물의 하류측(下流側)에 위치하는 원형구조물의 공기역학적 거동에 대하여 고찰하였다. 세 구조물의 배치에 따라, 하류측(下流側) 구조물에는 4가지 종류의 진동이 발생하는 복잡한 거동이 나타난다. 상류측(上流側) 구조물의 존재에 의하여 vortex induced oscillation은 큰 진폭증가를 보이며, wake buffeting으로 판단되는 한정(限定)지동이 발생한다. 또한 $1.4{\leq}S/D{\leq}3.6$ 간격에서는 풍속증가에 관계없이 일정한 진폭을 유지하는 진동이 발생하며, 이 진동의 진폭이 어느 한계점을 넘게 되면, 풍속증가에 따라 진폭이 증가하는 발산형(發散型) 진동으로 발달하게 된다.

  • PDF

플라즈마 디스플레이 패널(Plasma Display Panel) 텔레비전에서의 냉각 소음 저감

  • 김규영;최민구;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.719-724
    • /
    • 2003
  • The present experimental study deals with noise reduction and improvements in cooling performance in a plasma display panel(PDP) television (TV). To reduce the noise, the effects of installation parameters are studied. The experimental parameters under investigation are the distance between the fan and the rear case of a PDP TV, position of the strut on the fan, and the fan RPM. The variance of RPM is the most significant facto., and a 250 RPM decrease from 910 RPM causes about 4㏈(A) reduction in the system noise. To increase performance, flow characteristics are investigated by using a visualization technique and measuring the volume flow rate. The visualized results show that a radial direction flow due to large system resistance is significant, and an axial velocity oscillation is observed from the measurement of the volume flow rate. To prevent both a radial direction flow and an axial velocity oscillation, sponges are inserted in the space between f3n and the rear case. Inserted sponges improve the volume flow rate of cooling fans up to 32% since they convert a radial direction flow to an axial direction flow. Also an axial velocity oscillation with large amplitude and low RPM disappears. Increasing volume flow rate causes the PDP TV to improve its cooling performance. Additionally the same volume flow rate can be obtained with a decreased fan speed due to the inserted sponge. Noise reductions of 4.2 ㏈(A) at the rear and 1.1 ㏈(A) at the front of the TV are obtained by the decreased RPM. An increase of 10% of the volume flow rate is also achieved by inserting sponges.

  • PDF

회전요동하는 원통내의 유동 및 교반특성을 위한 수치해석적 연구 (Numerical Study on Fluid Flows and Stirring in a Circular Cylinder Subjected to Circulatory Oscillation)

  • 김현민;서용권
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.408-418
    • /
    • 1999
  • Incompressible flow inside a circular cylinder Including periodically oscillating free surface waves was studied primarily by using a numerical method. We developed a finite difference scheme based on the MAC method applicable to three-dimensional free-surface flows, and applied it to the present flow model to study tho flow characteristics as well as the fluid stirring. To verify the validity of our scheme, we performed a simple experiment for flow visualization. We found that the numerical results show a reasonable agreement with the observed flow patterns.

압출관에서의 압력 및 유형변화에 따른 유체유동에 관한 연구 (A Study on the Fluid Flow by Change of Pressure & Flow in the Collapsible Tube)

  • 김종억;이한영;홍기배
    • 대한의용생체공학회:의공학회지
    • /
    • 제5권1호
    • /
    • pp.47-54
    • /
    • 1984
  • In order to research the flow in the thin wall compliant tube, this present study is attempt to measure the cross sectional area according to change of external pressure and flow by ultrasonic method different from willy used impedance technique for flow analysis about one dimensional Steads flow. The experimental results are as follows. 1) Measurement of cross sectional area ratio by ultrasonic method by comparison with experimental results of impedance technique & theoretical results were well consent. 2) Pressure difference of upstream and down stream is alwap's maximum range at 0.4 < $\alpha$ <0.5, and have no connection with changing external pressure. 3) when the external pressure is fixed and resistance is varied, Self excited oscillation occurs in the region at 0.5 < $\alpha$ <0.6, and oscillation disappear almost at R2>=1.2

  • PDF

PIV 측정 흐름형태에 의한 타원형 날개꼴의 동적 실속 특성 연구 (A Study on the Dynamic Stall Characteristics of an Elliptical Airfoil by Flow Pattern Measured by PIV)

  • 이기영;손명환;정형석
    • 한국군사과학기술학회지
    • /
    • 제8권3호
    • /
    • pp.116-123
    • /
    • 2005
  • An experimental investigation on the static and dynamic stall characteristics of elliptic airfoil was performed by PIV velocity field measurements. The flow Reynolds number was $3.13{\times}10^5$ and the reduced frequency of the pitch oscillation ranged from 0.075 to 0.125. The onset of static stall was caused by boundary layer separation which started at the trailing edge and progressed toward the leading edge. However, dynamic stall was caused by the vortex shed at the leading edge region and the flow field showed a vortex dominated flow with turbulent separation and alternate vortex shedding. The increase of reduced frequency increased the dynamic stall angle of attack and intensified the flow hysteresis in the down-stroke phase.