• 제목/요약/키워드: Flow Field Plate

검색결과 271건 처리시간 0.028초

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007)

  • 한화택;신동신;최창호;이대영;김서영;권용일
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

판상제품의 세라믹 사출 시 공정변수 영향 분석 (Analysis of the Effect on the Process Parameters for the Thin Ceramic Plate in the Ceramic Injection Molding)

  • 김진호;홍석무;황지훈;이종찬;김낙수
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2587-2593
    • /
    • 2014
  • 세라믹 사출공정(CIM)은 산업 분야 전반에 걸쳐 널리 사용되고 있는 공정 중 하나로, 점차 의료용 전자기기의 부품 등으로 확대 적용되고 있다. 본 연구에서는 FEM 해석을 통해 CIM의 공정변수가 제품의 품질에 미치는 영향을 분석했다. 단순평판 형상의 해석결과를 기초로 구멍이 있는 형상, 모서리부가 둥근 형상 및 측벽 구조가 있는 형상 등과 비교 분석했다. 구멍이 있는 형상의 경우, 구멍 주변에 밀도분포가 고르지 못하며 용접선(weld-line)과 같은 결함이 발생할 수 있음을 예측할 수 있었다. 반면 제품의 모서리부 반경이 크면 성형성 및 유동성이 좋아지는 것을 확인했다. 따라서 CIM 공정변수 뿐만 아니라 제품의 형상변수도 고려해야 한다. 해석결과 온도, 초기분율, 속도 등의 공정변수는 제품의 품질 향상을 위한 중요한 설계 변수가 될 수 있음을 확인할 수 있었다.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

ERF와 산업용 콘트롤러를 이용한 FHA의 제어특성에 관한 연구 (A Study on the Control Characteristics of FHA by Using ERF and Industrial Controller)

  • 정성철
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.95-100
    • /
    • 2005
  • Making the best use of the features of the electro-rheological(ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. In addition, the performance of the plate type ER-Valve is investigated by change the particle concentration of the ER fluid. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power control system. Using the minかnぉd pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system fir the ER Valve which occurs from industrial controller(PLC).

냉장고 응축기의 전열성능에 대한 CFD 해석 (CFD ANALYSIS ON HEAT TRANSFER PERFORMANCE OF A REFRIGERATOR CONDENSER)

  • 유성수;황도연;이명수;한병윤;박형구
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.56-62
    • /
    • 2009
  • In this study, the heat transfer and flow field of a condenser used for a Kim-chi refrigerator is analysed with numerical method. Main objective is to present the basic data for designing a new condenser model with improvement of heat transfer performance. For CFD analysis, a commercial code, STAR CCM+ was used. The water was used for the inner working fluid and the air was used for the outer fluid. The condenser type used in this study is a flat plate fin-and-tube heat exchanger. As analysis parameters, the effect of condenser geometry and air velocity was investigated. For validation of the numerical calculations, the results were compared with the experimental ones. The heat transfer rates for both results were consistent with each other by maximum 5 % error. Based on this comparison, the numerical analysis was done with some modifications. As a result, it has been observed that there is a suitable fin pitch with which heat transfer performance of condenser is maximized.

천이영역의 희박기체 압축성 경계층 해석 (Analysis of rarefied compressible boundary layers in transition regime)

  • 최서원
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

저가형 조립 분리판의 개발 (Development of the Low Cost Assembled Separator)

  • 황용신;이주형;지상훈;박준호;이대영;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2009
  • This study considers the feasibility of using the low cost assembled separator. The graphite plate has been widely used as the separator in the field of PEMFCs(Polymer electrolyte membrane fuel cell) industry because of its excellent material properties such as good corrosion resistance, good electrical conductance and so on. However, there are some problems for the commercialization due to its poor cost effectiveness for the large volume manufacturing and lack of mechanical strength. From this respect, this study has focused on the manufacturing technology in order to reduce the price for the commercialization of separator. This study also shows that the assembled separator of the suggested structure, which is composed of grafoil and PC(PolyCarbonate) materials, could be manufactured at low cost enough for the mass production. The flow fields produced by cutting foils and the base plates of the separators were simply made by mechanical work.

  • PDF

자유수면에 낙하하는 물체의 충격압력 변화에 관한 연구 (A Study on the Impact Pressure of a Falling Body upon a Free Surface Water)

  • 이종붕
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.295-304
    • /
    • 2001
  • The hydrodynamic impact problem was studied from 1929 to recent. Especially, Impact pressure is important for the design of the ships and offshore structure and spacecrafts, and under weapons. A ship traveling at high speed or in heavy sea has its bow and bottom damaged by high pressure caused by impact with and detachment from the water surface. Considerable impact may also occur when large waves hit the cross member or deck plate of an offshore structure within the splash zone. Many engineering cases require consideration of impact pressure, the movement of objects and change of the flow field. This study was obtained the pressure distribution of a falling body that is deadrise angle $0^{\circ}$ and deadrise angle $5^{\circ}$ upon a water surface by the experiment with the impact machine. The theoretical equation was obtained the air region and the interface and the water region which devide 3 parties between the body and the water surface for an investigation of the complete phenomena. Pressure distributions and histories compare favorably with available experimental data. The numerical results are similar to the experimental results for the impact force type with Fo(1+$cos{\pi}t/tc$).

  • PDF

Dynamic Behavior of Liquid Propellant in Reusable Rocket Vehicle

  • Himeno, Takehiro;Nonaka, Satoshi;Naruo, Yoshihiro;Inatani, Yoshifumi;Watanabe, Toshinori
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.687-692
    • /
    • 2004
  • For the prediction of sloshing in the propellant tank of rocket vehicle utilized in RVT (reusable rocket vehicle testing) conducted by ISAS/JAXA, the flow field in the propellant tank during the ballistic flight was experimentally reproduced with the sub-scale model of it. The lateral acceleration as large as about 0.8 G was provided with a mechanical exciter and the deformation of liquid surface in the vessel was visualized with a high-speed camera. The several con-figurations of damping devices were installed and tested in the vessel, which should keep the ullage gas away from the outlet port. It was consequently suggested that the combination of a baffle plate and a perforated cylinder could be effective against the gas suction before the re-ignition of the engine. The sloshing phenomena were also simulated with the CFD code, called CIP-LSM. The numerical results showed good agreement with the corresponding data obtained in the experiment.

  • PDF