• Title/Summary/Keyword: Flow Field Modeling Error

Search Result 19, Processing Time 0.028 seconds

Reduced Order Modeling of Backward-Facing-Step Flow Field (후향계단 유동장 축약모델링 기법)

  • Lee, Jin-Ik;Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.833-839
    • /
    • 2012
  • In this paper, we analyze the reconstruction error in the modeling of flow field on BFS(Backward Facing Step). In order for the mathematical modelling of a density on the field, the spatial and temporal modes are extracted by POD(Proper Orthogonal Decomposition) method. After formulating the modeling error, we summarize the relationship between the energy strength and the reconstruction errors. Moreover the allowable modeling error limits in the flow control point of view are confined by analysing in the frequency domain as well as time domain of the reconstructed data.

Experimental Analysis of ER Effects about Flow-Mode (Flow Mode 유동에 대한 ER효과의 실험적 해석)

  • 임춘성;이은준;주동우;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1135-1138
    • /
    • 2003
  • ERFs(Electrorheological Fluids) arc a complex system consisting of polarizable particles and insulation liquid. When an external electric field is applied to ERFs, its apparent viscosity increases dramatically. This phenomenon is called the ER effect. Generally, the behavior of ERFs has been modeled on those of Bingham fluids. But the behavior of ERFs differs from those of Bingham fluids in many respects. In the paper, ER effect concerning flow mode of ERFs is analyzed experimentally. According to several flow conditions, the change of ER effect is presented and visualized. A new modeling methodology of ER effect to reduce the modeling error is presented.

  • PDF

Numerical Study of Drag and Noise Reduction of Electric Cable

  • Yoon, Tae-seok;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.17-23
    • /
    • 2001
  • To develop the code of predicting flow-field and aeroacoustic noise by an electrical cable, a combined CFD-Acoustic analogy approach is selected. The two dimensional, unsteady and incompressible Reynolds-averaged Navier-Stokes solver with κ-ω and κ-ω SST turbulence modeling is used to calculate the near flow-field around an electric cable. Near-field results are then coupled with two-dimensional Curle's integral formulation based upon Lighthill's acoustic analogy with the assumption of acoustic compactness. To validate this code, numerical results are compared with experimental data for a circular cylinder. The simulation shows an overprediction on acoustic amplitudes, but overally speaking, the spectrum pattern of sound pressure agrees well with experiment within an acceptable amount of error. In addition, a few cross-sections of the cable were selected and tested with each other in terms of drag and radiated noise

  • PDF

Modeling of MR Damper Landing Gear Considering Incompletely Developed Fluid Flow (불완전 발달 유체 유동을 고려한 MR댐퍼 착륙장치 모델링)

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • A semi-active MR damper landing gear is a damper that generates a fluid damping force and a magnetic field control damping force when the MR fluid passes through annular flow paths. In the case of MR fluid passing through annular flow paths, an incompletely developed flow inevitably occurs, causing an error in calculating damper inner forces including the fluid damping force. This error results in an inaccurate design of damper structural parameters and control gain selection, resulting in deterioration of dynamic characteristics and shock absorption performance of the landing gear. In this paper, we derived a mathematical model of an MR damper landing gear considering additional damping force generated in the entrance region of annular flow paths of the MR damper. If the mathematical modeling derived from this paper is applied to the design and optimization process of an MR damper landing gear, excellent performance of the MR damper landing gear is expected.

Development of 3-D Stereo PIV (3차원 스테레오 PIV 개발)

  • Kim Mi-Young;Choi Jang-Woon;Nam Koo-Man;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.19-22
    • /
    • 2002
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of a section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of oblique-angled image to transformed image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis of a section field of 3-D flow, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

  • PDF

Internal flow Analysis Research Design and Methodology for Trochoid Pump (트로코이드 펌프 설계방법 및 내부 유동 해석연구)

  • Jeong, Seung Won;Chung, Won Jee;Kim, Myung Sik;Jeon, Ju Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • This paper provides a methodology for extracting design data from the three-dimensional design software SolidWorks$^{(R)}$, which is based on the existing trochoid pump design equations that are used by hydraulic field engineers. The data extracted from the SolidWorks$^{(R)}$ model are input to a hydraulic analysis software AMESim model to determine the design factors that can influence the properties of a trochoid pump. On the basis of the simulation results, this paper proposes a method to reduce the flow loss by adjusting the outlet angle of the trochoid pump. This proposal was verified by using actual experimental results, which confirmed that adjusting the outlet angle can increase the flow rate. Hence, the results presented in this paper can contribute to the prototyping of a trochoid pump by reducing the cost associated with a trial-and-error design.

Numerical Study for Drag and Noise Reduction of Electrical Cable (송전선의 항력저감 및 소음에 관한 수치 연구)

  • Yoon, T.S.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1716-1720
    • /
    • 2000
  • To develop the code of predicting flow-field and aeroacoustic noise by a electrical cable, a combined CFD-acoustic analogy approach is selected. The two-dimensional, unsteady, incompressible Reynolds-Averaged Navier-Stokes solver with a ${\kappa}{\omega}$, ${\kappa}{\omega}$ SST turbulence modeling is used to calculate the near-field around electrical cable. Near-field results are then coupled with two-dimensional Curle's integral formulation based upon Lighthill's acoustic analogy with an assumption of acoustic compactness. To validate this code, numerical results are compared with experimental data for a circular cylinder. The simulation shows an overprediction on acoustic amplitudes, but overally speaking, the spectrum pattern of sound pressure agrees well with experiment in an acceptable amount of error. In addition, various cross sections of a cable were selected and compared with each other in terms of drag and radiated noise.

  • PDF

Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System (연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

Development of 3-D Stereo PIV by Homogeneous Coordinate System (호모지니어스 좌표계를 이용한 3차원 스테레오 PIV 알고리듬의 개발)

  • Kim, Mi-Young;Choi, Jang-Woon;Nam, Koo-Man;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.736-743
    • /
    • 2003
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of an illuminated slied section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of the oblique-angled image to the right-angled image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

Multidimensional Hydrodynamic and Water Temperature Modeling of Han River System (한강 수계에서의 다차원 시변화 수리.수온 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.866-881
    • /
    • 2012
  • Han River is a complex water system consisting of many lakes. The water quality of Lake Paldang is significantly affected by incoming flows, which are the South and North branches of the Han River, and the Kyungan Stream. In order to manage the water quality of the Lake Paldang, we should consider the entire water body where the incoming flows are included. The objectives of this study are to develop an integrated river and lake modeling system for Han River system using a multidimensional dynamic model and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using field measurement data obtained in 2007 and 2008. The model showed satisfactory performance in predicting temporal variations of water level, flow rate and temperature. The Root Mean Square Error (RMSE) for water temperature simulation were $0.88{\sim}2.13^{\circ}C$ (calibration period) and $1.05{\sim}2.00^{\circ}C$ (verification period) respectively. And Nash-Sutcliffe Efficiency (NSE) for water temperature simulation were 1089~0.98 (calibration period) and 0.90~0.98 (verification period). Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature within Han River system. The variations of temperature along the river reaches and vertical thermal profiles for each lakes were effectively simulated with developed model. The suggested modeling system can be effectively used for integrated water quality management of water system consisting of many rivers and lakes.