• 제목/요약/키워드: Flow Dynamic Design

Search Result 566, Processing Time 0.032 seconds

A Traffic Accident Detection and Analysis System at Intersections using Probability-based Hierarchical Network (확률기반 계층적 네트워크를 활용한 교차로 교통사고 인식 및 분석 시스템)

  • Hwang, Ju-Won;Lee, Young-Seol;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.995-999
    • /
    • 2010
  • Every year, traffic accidents and traffic congestion have been rapidly increasing, Although the roadway design and signal system have been improved to relieve traffic accidents, traffic casualties and property damage do not decrease. This paper develops a real-time traffic accident detection and analysis system (RTADAS): In the proposed system, we aim to precisely detect traffic accidents at different design and flow of intersections, However, because the data collected from intersections have uncertainty and complicated causal dependency between them, we construct probability-based networks for correct accident detection.

Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines (스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석)

  • Oh, Yun-Ji;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

An Analysis on the Design and Speed Performance of a One-man Boat (1인승 소형 보트 설계 및 속도성능 분석)

  • Park, Dong-Woo;Park, Gyeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.552-557
    • /
    • 2014
  • The objective of the This study is to access the speed performance employing the sea trial test and CFD with the our own designed and manufactured one-man boat. The overall design process including hull form design was explained. The sea trial was carried out with a manufactured boat in the clam sea. Brake power at the design speed of a boat through the sea trial was measured as 1680 W. The flow computation was conducted considering free surface and dynamic trim using a commercial CFD code(STAR-CCM+). The result of computation provided the information that residual resistance is bigger than fraction's at design speed. The total efficiency were predicted based on the sea trial and CFD. The Total efficiency was divided into shaft efficiency and quasi-propulsive efficiency. By using quasi-propulsive efficiency, it becomes possible to predict speed performance of boat in future. The results can provide information regarding hull form design, performance analysis and development of a boat in future.

Minimizing Security Hole and Improving Performance in Stateful Inspection for TCP Connections (TCP연결의 스테이트풀 인스펙션에 있어서의 보안 약점 최소화 및 성능 향상 방법)

  • Kim, Hyo-Gon;Kang, In-Hye
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.443-451
    • /
    • 2005
  • Stateful inspection devices must maintain flow information. These devices create the flow information also for network attack packets, and it can fatally inflate the dynamic memory allocation on stateful inspection devices under network attacks. The memory inflation leads to memory overflow and subsequent performance degradation. In this paper, we present a guideline to set the flow entry timeout for a stateful inspection device to remove harmful embryonic entries created by network attacks. Considering Transmission Control Protocol (TCP) if utilized by most of these attacks as well as legitimate traffic, we propose a parsimonious memory management guideline based on the design of the TCP and the analysis of real-life Internet traces. In particular, we demonstrate that for all practical purposes one should not reserve memory for an embryonic TCP connection with more than (R+T) seconds of inactivity where R=0, 3, 9 and $1\leqq{T}\leqq{2}$ depending on the load level.

Performance of Various Drug-Eluting Stent Geometries Measured Using Computational Analysis (여러 형상을 고려한 약물분출 스텐트의 성능에 대한 수치해석적 연구)

  • Seo, Tae-Won;Barakat, Abdul I.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.601-607
    • /
    • 2012
  • In this study, we performed computational fluid dynamic simulations to explore how the detailed design of drug-eluting stents affects both the flow field in the vicinity of the stent as well as the concentration of the eluted drug at the endothelial cell surface. Simulations were performed on three idealized stent geometries we developed and on geometries approximating three commercial stents,: Medtronic's Aurora stent, Cordis's BX Velocity stent, and Boston Scientific's Wallstent. An important contribution of the present study is the introduction of the stent effectiveness index (EI), which provides a quantitative assessment of stent performance and an objective basis for comparing the performance of different stents. Among the three commercial stents studied, our simulations have revealed that the BX Velocity stent is associated with the lowest in-stent EI values for the range of flow Reynolds numbers studied ($200{\leq}Re{\leq}800$). In addition to commercial stent designs, we investigated the EI in three idealized stents and determined that a spiral stent provides excellent performance (low EI) under all flow conditions investigated.

Experimental Validation of Ornithopter Aerodynamic Model in Low Reynolds Number Regime (저 레이놀즈 수 영역에서 날갯짓 비행체 공력 모델의 실험적 검증)

  • Lee, Jun-Seong;Kim, Dae-Kwan;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.647-654
    • /
    • 2010
  • In this study, an efficient ornithopter aerodynamic model, which is applicable to ornithopter wing design considering fluid-structure interaction or ornithopter flight dynamics and control simulation, was proposed and experimentally validated through the wind tunnel experiments. Due to the ornithopter aerodynamics governed by unsteady low Reynolds number flow, an experimental device was specially designed and developed. A part of the experimental device, 2-axis loadcell, was situated in the non-inertial frame; the dynamic calibration method was established to compensate the inertial load for pure aerodynamic load measurements. The characteristics of proposed aerodynamic model were compared with the experimental data in terms of mean and root-mean-square values of lift and drag coefficients with respect to the flow speed, flapping frequency, and fixed angle of attack.

Design of An Abstraction Technique of Road Network for Adapting Dynamic Traffic Information (동적 교통 정보를 적용하기 위한 도로망 추상화기법의 설계)

  • Kim, Ji-Soo;Lee, Ji-wan;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.199-202
    • /
    • 2009
  • The optimal path on real road network has been changed by traffic flow of roads frequently. Therefore a path finding system to find the optimal path on real network should consider traffic flow of roads that is changed on real time. The most of existing path finding methods do not consider traffic flow of roads and do not also perform efficiently if they use traffic information. In this paper, we propose an abstraction method of real road network based on the Terminal Based Navigation System (TBNS) with technique such as TPEG. TBNS can be able to provides quality of path better than before as using traffic information that is transferred by TPEG. The proposed method is to abstract real network as simple graph in order to use traffic information. It is composed boundary nodes based on real nodes, all boundary nodes that have the same of connection are merged together. The result of path finding on an abstract graph diminishes the search space.

  • PDF

Effect of Heat Transfer and Phase Change of Coolant on the Performance of Mixed-gas Ejection System (냉각제의 분사조건 및 상변화가 혼합가스 사출시스템의 성능에 미치는 영향)

  • Kim, Hyun Muk;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.84-93
    • /
    • 2018
  • Three-dimensional (3D) numerical simulations have been carried out to study how coolant injection conditions influence the cooling efficiency and projectile ejection performance in a mixture-gas ejection system (or gas-steam launch system). The 3D single-phase computational model was verified using a 1D model constructed with reference to the previous research and then a two-phase flow computation simulating coolant injection on to hot gas was performed using a DPM (Discrete Phase Model). As a result of varying the coolant flow rate and number of injection holes, cooling efficiency was improved when the number of injection holes were increased. In addition, the change of the coalescence frequency and spatial distribution of coolant droplets caused by the injection condition variation resulted in a change of the droplet diameter, affecting the evaporation rate of coolant. The evaporation was found to be a critical factor in the design optimization of the ejection system by suppressing the pressure drop while the temperature decreases inside the breech.

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

액체로켓용 터빈시스템 설계

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.163-172
    • /
    • 2002
  • The turbine system composed of a nozzle and a rotor is used to drive turbopumps while gas passes through the nozzle, potential energy is converted to kinematic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of a turbine system is investigated using compressible fluid dynamic theories with some pre-determined design requirements (i.e.,pressure ratio, rotational speed, required power etc.) obtained from a liquid rocket engine (L.R.E.) system design. For simplicity of a turbine system, impulse-type rotor blades for open type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow rate compared to the close-type system. In this study, a partial admission nozzle is adopted to maximize the efficiency of the close-type turbine system. A design methodology of the a turbine system has been introduced. Especially, a partial admission nozzle has been designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design for a 10 ton thrust level of L.R.E is presented.

  • PDF